MRS Cube Analysis#

Use case: Extract spatial-spectral features from IFU cube and measure their attributes.
Data: Simulated MIRI MRS spectrum of AGB star.
Tools: specutils, astropy, scipy.
Cross-intrument: NIRSpec, MIRI.
Documentation: This notebook is part of a STScI’s larger post-pipeline Data Analysis Tools Ecosystem and can be downloaded directly from the JDAT Notebook Github directory.
Source of Simulations: MIRISim
Pipeline Version: JWST Pipeline

Note: This notebook includes MIRI simulated data cubes obtained using MIRISim (https://wiki.miricle.org//bin/view/Public/MIRISim_Public) and run through the JWST pipeline (https://jwst-pipeline.readthedocs.io/en/latest/) of point sources with spectra representative of late M type stars.

Introduction#

This notebook analyzes one star represented by a dusty SED corresponding to the ISO SWS spectrum of W Per from Kraemer et al. (2002) and Sloan et al. (2003) to cover the MRS spectral range 5-28 microns. Analysis of JWST spectral cubes requires extracting spatial-spectral features of interest and measuring their attributes.

This is the second notebook, which will perform data analysis using specutils. Specifically, it will fit a model photosphere/blackbody to the spectra. Then it will calculate the centroids, line integrated flux and equivalent width for each dust and molecular feature.

This notebook utilizes reduced data created in the first notebook (JWST_Mstar_dataAnalysis_runpipeline.ipynb), although you don’t have to run that notebook to use this notebook. All data created in notebook number 1 are available for download within this noteobok.

To Do:#

  • Make function to extract spectra from datacube using a different means of extraction.

  • Replace blackbody fit to the photosphere part of the spectra with a stellar photosphere model.

  • Make sure errors have been propagated correctly in the caculation of centroids, line integrated flux and equivalent widths. (Science Author)

  • Make simple function within the specutils framework to fit a continium and measure centroids, line integrated flux and equivalent widths of broad solid state and molecular features.

Import Packages#

# Import useful python packages
import numpy as np

# Import packages to display images inline in the notebook
import matplotlib.pyplot as plt    
%matplotlib inline   

# Set general plotting options
params = {'legend.fontsize': '18', 'axes.labelsize': '18',
          'axes.titlesize': '18', 'xtick.labelsize': '18',
          'ytick.labelsize': '18', 'lines.linewidth': 2, 'axes.linewidth': 2, 'animation.html': 'html5'}
plt.rcParams.update(params)
plt.rcParams.update({'figure.max_open_warning': 0})
# Import astropy packages
from astropy import units as u
from astropy.io import ascii
from astropy.nddata import StdDevUncertainty
from astropy.utils.data import download_file

# To deal with 1D spectrum
from specutils import Spectrum1D
from specutils.manipulation import box_smooth, extract_region
from specutils.analysis import line_flux, centroid, equivalent_width
from specutils.spectra import SpectralRegion
from specutils import SpectrumList
from jdaviz import Specviz
from jdaviz import Cubeviz

# Display the video
from IPython.display import YouTubeVideo
# Save and Load Objects Using Pickle
import pickle


def save_obj(obj, name):
    with open(name, 'wb') as f:
        pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)


def load_obj(name):
    with open(name, 'rb') as f:
        return pickle.load(f)
def checkKey(dict, key):

    if key in dict.keys():
        print("Present, ", end=" ")
        print("value =", dict[key])
        return True
    else:
        print("Not present")
        return False
import warnings
warnings.simplefilter('ignore')
# Check if Pipeline 3 Reduced data exists and, if not, download it
import os
import urllib.request
import tarfile

if os.path.exists("combine_dithers_all_exposures_ch1-long_s3d.fits"):
    print("Pipeline 3 Data Exists")
else:
    url = 'https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/MRS_Mstar_analysis/reduced.tar.gz'
    urllib.request.urlretrieve(url, './reduced.tar.gz')

    base_extract_to = os.path.abspath(".")  # Current directory

    # Open and securely extract files from the tar archive
    with tarfile.open('./reduced.tar.gz', "r:gz") as tar:
        for member in tar.getmembers():
            # Calculate the absolute path of where the file will be extracted
            member_path = os.path.abspath(os.path.join(base_extract_to, member.name))

            # Check if the file path is within the base extraction directory
            if member_path.startswith(base_extract_to):
                # Extract only safe files, directly to the base directory
                tar.extract(member, path=base_extract_to)
            else:
                print(f"Skipped {member.name} due to potential security risk")
    os.system('mv reduced/*fits .')

Read in 12 spectra from Notebook 1 using SpectrumList and create one master spectrum. MIRI MRS data will typically have a separate 1D spectrum and 3D cube associated with each Channel and Sub-Band.

# Read in all X1D spectra to a single spectrum list and combine into a single spectrum1d object

ddd = '.'
splist = SpectrumList.read(ddd)

wlallorig = []
fnuallorig = []
dfnuallorig = []
for bndind in range(len(splist)):
    for wlind in range(len(splist[bndind].spectral_axis)):
        wlallorig.append(splist[bndind].spectral_axis[wlind].value)
        fnuallorig.append(splist[bndind].flux[wlind].value)
        dfnuallorig.append(splist[bndind].uncertainty[wlind].array)

wlallarr = np.array(wlallorig)
fnuallarr = np.array(fnuallorig)
dfnuallarr = np.array(dfnuallorig)
srtind = np.argsort(wlallarr)
wlall = wlallarr[srtind]
fnuall = fnuallarr[srtind]

# Developer Note: We put in errors of 0.0001, but uncertainties need to be fixed
dfnuall = (0.0001)*np.ones(len(fnuall))

Specviz Visualization of the SpectrumList#

You can visualize the spectrum list inside a Jupyter notebook using Specviz

Video 1:#

This Specviz Instructional Demo is from STScI’s official YouTube channel and provides an introduction to Specviz.

vid = YouTubeVideo("zLyRnfG32Bo")
display(vid)

Read in the SpectrumList (12 unique spectra)#

# Open these spectra up in Specviz
specviz = Specviz()
specviz.show()

Load in the spectrum list from above. Note, only the first spectrum in your list is displayed automatically. You will need to turn on the remaining spectra in the “DATA” drop-down, then hit the “Home” button in the toolbar, and scale our plot accordingly to see the other spectra.#

# Load in the spectrum list from above.
specviz.load_data(splist)

Cubeviz Visualization#

You can also visualize images inside a Jupyter notebook using Cubeviz

Video 2:#

This Cubeviz Instructional Demo is from STScI’s official YouTube channel and provides an introduction to Cubeviz.

vid = YouTubeVideo("HMSYwiH3Gl4")
display(vid)
cubeviz = Cubeviz()
cubeviz.show()

Developer Note. Need to pick a different unit than meters. https://jira.stsci.edu/browse/JDAT-1792#

# Here, we load the data into the Cubeviz app for visual inspection.
# In this case, we're just looking at a single channel because, unlike Specviz, Cubeviz can only load a single cube at a time.

ch1short_cubefile = 'combine_dithers_all_exposures_ch1-long_s3d.fits'
cubeviz.load_data(ch1short_cubefile)

Next, you want to define a pixel region subset that is specific to the AGB star. You can do this with the regions utility button and drawing a circular region around the AGB star at approximate pixels x=20, y=30.

# Now extract spectrum from your spectral viewer
# NEED TO show how to use Spectral Extraction plugin and calculate mean instead of sum spectra
try:
    spec_agb = cubeviz.get_data('Spectrum (Subset 1, sum)')  # AGB star only
    print(spec_agb)
    spec_agb_exists = True
except Exception:
    print("There are no subsets selected.")
    spec_agb_exists = False
    spec_agb = cubeviz.get_data('Spectrum (sum)')  # Whole field of view
    print(spec_agb)
There are no subsets selected.
Spectrum1D (length=1091)
Flux=[4.2626414e-08 4.2254175e-08 4.2601307e-08 ... 3.8526498e-08
      3.9080032e-08 3.8828496e-08] MJy,  mean=0.00000 MJy
Spectral Axis=[6.42050008 6.42150008 6.42250008 ... 7.50850013 7.50950013
               7.51050013] um,  mean=6.96550 um
Uncertainty=StdDevUncertainty ([8.8310835e-06 8.1039734e-06 8.1217186e-06 ... 8.5865504e-06 8.3688155e-06
 8.6515474e-06] MJy)

Developer Note: Since Cubeviz only displays a single cube at a time, you can’t extract a full spectrum at the current time. So, you should use the spectrum defined above (‘spec’)#

Make a 1D spectrum object#

wav = wlall*u.micron  # Wavelength: microns
fl = fnuall*u.Jy  # Fnu:  Jy
efl = dfnuall*u.Jy  # Error flux: Jy

# Make a 1D spectrum object
spec = Spectrum1D(spectral_axis=wav, flux=fl,
                  uncertainty=StdDevUncertainty(efl))
# Apply a 5 pixel boxcar smoothing to the spectrum
spec_bsmooth = box_smooth(spec, width=5)

# Plot the spectrum & smoothed spectrum to inspect features
plt.figure(figsize=(8, 4))
plt.plot(spec.spectral_axis, spec.flux, label='Source')
plt.plot(spec.spectral_axis, spec_bsmooth.flux, label='Smoothed')
plt.xlabel('Wavelength (microns)')
plt.ylabel("Flux ({:latex})".format(spec.flux.unit))
plt.ylim(-0.05, 0.15)

# Overplot the original input spectrum for comparison
origspecfile = fn = download_file(
    'https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/MRS_Mstar_analysis/63702662.txt', cache=True)
origdata = ascii.read(origspecfile)
wlorig = origdata['col1']
# comes in as mJy, change to Jy to compare with pipeline output
fnujyorig = origdata['col2']*0.001
plt.plot(wlorig, fnujyorig, '.', color='grey',
         markersize=1, label='Original Input')

plt.legend(frameon=False, fontsize='medium')
plt.tight_layout()
plt.show()
plt.close()
../../../_images/45b3a7695ffc345ac6fa6feda1c6cf56932b4bac018370628dc516fc5b5a0596.png

Visualize for Analysis the Single Spectrum1D Object Created Above from All 12 Individual Spectra#

You can visualize the extracted spectrum inside Specviz

# Open these spectra up in Specviz
specviz = Specviz()
specviz.show()
specviz.load_data(spec_agb)
# Make new video to show how to smooth spectrum in Specviz

Data analysis#

Analyze the spectrum1d object (spec) created from the spectrumlist list above.

Fit a continuum - find the best-fitting template (stellar photosphere model or blackbody)#

For AGB stars with a photosphere component fit a stellar photosphere model or a blackbody to short wavelength end of the spectra.

Developer Note: Would idealy like to fit the photosphere with a set of Phoenix Models.#

I think template_comparison may be a good function here to work with the Phoenix Models which have been setup to interface with pysynphot.
For now switching to a blackbody.

# Make new video to show how to fit a blackbody model to the spectrum
spectra = specviz.get_spectra()

a = checkKey(spectra, "BB1")
if a is True:
    # Extract Blackbody fit from Specviz
    blackbody = spectra["BB1"]
else:
    print("No Blackbody")
    fn = download_file(
        'https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/MRS_Mstar_analysis/blackbody.fits', cache=True)
    blackbody = Spectrum1D.read(fn)
Not present
No Blackbody
# Delete any existing output in current directory
if os.path.exists("blackbody.fits"):
    os.remove("blackbody.fits")
else:
    print("The blackbody.fits file does not exist")
The blackbody.fits file does not exist
# Save if you so desire. Keep commented otherwise.
# blackbody.write('blackbody.fits')
# Rename blackbody.flux as ybest
ybest = blackbody.flux

Developer Note: At this point, the 12 extracted 1D spectra need to get spliced together with a specialty function written for MRS.#

# Plot the spectrum & the model fit to the short wavelength region of the data.
plt.figure(figsize=(8, 4))
plt.plot(spec.spectral_axis, spec.flux, label='Source')
plt.plot(spec.spectral_axis, ybest, label='BB')
plt.xlabel('Wavelength (microns)')
plt.ylabel("Flux ({:latex})".format(spec.flux.unit))
plt.title("Spectrum with blackbody fit")
plt.legend(frameon=False, fontsize='medium')
plt.tight_layout()
plt.ylim(-0.05, 0.15)
plt.show()
plt.close()

# Now subtract the BB and plot the underlying dust continuum
plt.figure(figsize=(8, 4))
plt.plot(spec.spectral_axis, spec.flux.value -
         ybest.value, color='purple', label='Dust spectra')
plt.axhline(0, color='r', linestyle='dashdot', alpha=0.5)
plt.xlabel('Wavelength (microns)')
plt.ylabel("Flux ({:latex})".format(spec.flux.unit))
plt.title("Continuum-subtracted spectrum")
plt.legend(frameon=False, fontsize='medium')
plt.tight_layout()
plt.ylim(-0.05, 0.15)
plt.show()
plt.close()
../../../_images/b38a0929df2033b090493ef7e6851214ce7cade6558e31e1fe41bcb46ed7e246.png ../../../_images/88b56ec39d580a26696c62287b3efda62ff50d6958766470386a33cd8ae13762.png

Now have the dust continuum want to look for features and measure their properties.#

Want to find:

  • Equivalent width

  • Equivalent flux

  • Optical depth

  • Centroids = wavelength with half the flux on either side

As an example lets focus on the amorphous silicate 10 micron region.#

Method - used repeatedly

  • Fit a spline to the photosphere continuum subtracted spectra excluding the feature in this fit.

  • Trim the spectra to that wavelength region as the spline is now a different size to the full wavelength range of the spectra.

  • Make a continuum subtracted and and continuum normalised spectra.

  • Convert the units of the flux from Jy to W/m^2/wavelength for nice units post line integration.

  • Determine the feature line flux in units of W/m^2 and the feature centroid. Use continuum subtracted spectra.

  • Determine the feature equivalent width. Use continuum normalised spectra.

  • Make sure errors have been propagated correctly.

  • Store these results in a table

  • Several molecular and dust features are normally present in the spectra. Repeat for each feature.

Note This seems like a long winded way to do this. Is there a simpler approach?

For instance a tool that takes four wavelengths, fits a line using the data from lam0 to lam1 and lam2 to lam3, then passes the continuum-subtracted spectrum for line integration from lam1 to lam2 with error propagation is needed several times for dust features. But with the current spectra1d framework this takes many steps to write manually and is beyond tedious after doing this for 2 features let alone 20+. Similar framework is also needed for the integrated line centroid with uncertainty, and the extracted equivalent width.

# Subtract the continuum and plot in a new instance of specviz
bbsub_spectra = spec - ybest.value     # continuum subtracted spectra - Dust only
specviz = Specviz()
specviz.show()
specviz.load_data(bbsub_spectra)
# Make new video to show how to fit a polynomial to two separate spectral regions within a single subset
spectra = specviz.get_spectra()

a = checkKey(spectra, "PolyFit")
if a is True:
    # Extract polynomial fit from Specviz
    poly = spectra["PolyFit"]
else:
    print("No Polyfit")
    fn = download_file(
        'https://data.science.stsci.edu/redirect/JWST/jwst-data_analysis_tools/MRS_Mstar_analysis/poly.fits', cache=True)
    poly = Spectrum1D.read(fn)
Not present
No Polyfit
# Delete any existing output in current directory
if os.path.exists("poly.fits"):
    os.remove("poly.fits")
else:
    print("The poly.fits file does not exist")
The poly.fits file does not exist
# Save if you so desire. Keep commented otherwise.
# poly.write('poly.fits')
# Fit a local continuum between the flux densities at: 8.0 - 8.1 & 14.9 - 15.0 microns
# (i.e. excluding the line itself)

sw_region = 8.0   # lam0
sw_line = 8.1     # lam1
lw_line = 14.9    # lam2
lw_region = 15.0  # lam3

# Zoom in on the line complex & extract
line_reg_10 = SpectralRegion([(sw_region*u.um, lw_region*u.um)])
line_spec = extract_region(bbsub_spectra, line_reg_10)
polysub = extract_region(poly, line_reg_10)
line_y_continuum = polysub.flux

# -----------------------------------------------------------------
# Generate a continuum subtracted and continuum normalised spectra

line_spec_norm = Spectrum1D(spectral_axis=line_spec.spectral_axis, flux=line_spec.flux /
                            line_y_continuum, uncertainty=StdDevUncertainty(np.zeros(len(line_spec.spectral_axis))))
line_spec_consub = Spectrum1D(spectral_axis=line_spec.spectral_axis, flux=line_spec.flux -
                              line_y_continuum, uncertainty=StdDevUncertainty(np.zeros(len(line_spec.spectral_axis))))

# -----------------------------------------------------------------
# Plot the dust feature & continuum fit to the region

plt.figure(figsize=(8, 4))

plt.plot(line_spec.spectral_axis, line_spec.flux.value,
         label='Dust spectra 10 micron region')

plt.plot(line_spec.spectral_axis, line_y_continuum, label='Local continuum')

plt.xlabel('Wavelength (microns)')
plt.ylabel("Flux ({:latex})".format(spec.flux.unit))
plt.title(r"10$\mu$m feature plus local continuum")
plt.legend(frameon=False, fontsize='medium')
plt.tight_layout()
plt.show()
plt.close()

# -----------------------------------------------------------------
# Plot the continuum subtracted 10 micron feature

plt.figure(figsize=(8, 4))

plt.plot(line_spec.spectral_axis, line_spec_consub.flux, color='green',
         label='continuum subtracted')

plt.xlabel('Wavelength (microns)')
plt.ylabel("Flux ({:latex})".format(spec.flux.unit))
plt.title(r"Continuum subtracted 10$\mu$m feature")
plt.tight_layout()
plt.show()
plt.close()
../../../_images/46d6466fa885ac42ed42efe1746ec8b7b080aef05fc3e5b35ef0962a15af9977.png ../../../_images/2590567cd1941266a180ab5148dabd69c15064a00aaa1db6d3b2e3f11ce1309d.png
# Load 10 um feature back into specviz and calculate the Line flux; Line Centroid; Equivalent width
specviz = Specviz()
specviz.show()
specviz.load_data(line_spec_consub, data_label='Continuum Subtraction')
specviz.load_data(line_spec_norm, data_label='Normalized')
# Make new video to show how to measure lines within specviz
# Alternative method to analyze the 10um line within the notebook. Calculate the Line flux; Line Centroid; Equivalent width

line_centroid = centroid(
    line_spec_consub, SpectralRegion(sw_line*u.um, lw_line*u.um))
line_flux_val = line_flux(
    line_spec_consub, SpectralRegion(sw_line*u.um, lw_line*u.um))

equivalent_width_val = equivalent_width(line_spec_norm)

# Hack to convert the line flux value into more conventional units
# Necessary as spectra has mixed units: f_nu+lambda
line_flux_val = (line_flux_val * u.micron).to(u.W * u.m**-2 * u.micron,
                                              u.spectral_density(line_centroid)) / u.micron

print("Line_centroid: {:.6} ".format(line_centroid))
print("Integrated line_flux: {:.6} ".format(line_flux_val))
print("Equivalent width: {:.6} ".format(equivalent_width_val))
Line_centroid: 10.7569 micron 
Integrated line_flux: 6.65227e-15 W / m2 
Equivalent width: -15.0066 micron 
# Compute the optical depth of the 10 micron feature

tau = -(np.log(line_spec.flux.value / line_y_continuum.value))
optdepth_spec = Spectrum1D(spectral_axis=line_spec.spectral_axis,
                           flux=tau*(u.Jy/u.Jy))
# Plot the optical depth of the 10 micron region vs wavelength
plt.figure(figsize=(10, 6))
plt.plot(optdepth_spec.spectral_axis, optdepth_spec.flux)
plt.xlabel("Wavelength ({:latex})".format(spec.spectral_axis.unit))
plt.ylabel('Tau')
plt.tight_layout()
plt.show()
plt.close()
../../../_images/0a0bc9a3e4035c5338c75843dba485494cef10e12a56307c767a79df58ed72d6.png

Note At this point repeat all the steps above to isolate solid-state features e.g. for the forsterite feature at at approx 13.3 microns.

This is the end of the notebook that shows some basic analysis of a MIRI MRS spectrum using Cubeviz and Specviz. Much more analysis is possible.

Additional Resources#

About this notebook#

Author: Olivia Jones, Project Scientist, UK ATC.
Updated On: 2020-08-11
Updated On: 2021-09-06 by B. Sargent, STScI Scientist, Space Telescope Science Institute (added MRS Simulated Data)
Updated On: 2021-12-12 by O. Fox, STScI Scientist (added blackbody and polynomial fitting within the notebook)
Updated On: 2024-10-29 by C. Pacifici, STScI Data Scientist, adapt to Jdaviz 4.0 (still need to update videos)


Top of Page