Mapping Galaxy Properties with MaNGA + HST#
Learning Goals#
By the end of this tutorial, you will:
Understand how to search the MAST Archive and download SDSS MaNGA data using
astroquery.mast
Plot galaxy properties including H-\(\alpha\) emission line flux and stellar velocities with MaNGA
Understand how to search for HST data complementing the MaNGA observations
Create maps of galaxy properties by combining HST and MaNGA data
Table of Contents#
Introduction
Imports
Accessing MaNGA data at MAST
Querying All MaNGA data
Searching for a specific galaxy
Downloading MaNGA data products
Plotting velocity and flux maps from MaNGA
Searching for HST data of this galaxy
Coordinate search using astroquery.mast
Colorizing HST images with astropy
Combining MaNGA and HST data
Creating an H-alpha Emission Map
Plotting the stellar velocity field
Additional Resources
How to Cite
About This Notebook
Introduction#
The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey provides optical-wavelength integral field unit (IFU) spectroscopy for over 10,000 nearby galaxies. MaNGA collected data between 2014 - 2020 as part of the Sloan Digital Sky Survey (SDSS-IV) project. MaNGA data is now available at the Mikulski Archive for Space Telescopes (MAST) through the SDSS Legacy Archive at MAST.
In this notebook tutorial, we will demonstrate how to access MaNGA data at MAST using Python. One MaNGA observation, an interacting galaxy pair named MaNGA 7443-12703
will be used to demonstrate the basics of how to download and plot MaNGA data. We will then combine this MaNGA data with HST observations, also accessible from MAST, to study this galaxy pair in detail, exploring how its gas and stars are moving as the galaxies merge together.
Imports#
The main packages we’re using for this notebook and their use-cases are:
astropy.coordinates for handling astronomical coordinates
astroquery.mast Observations for searching the MAST archive
astropy.visualization for colorizing images
astropy.wcs WCS for handling spatial footprints
astropy.units for working with astronomical units
astropy.io fits for accessing FITS files
matplotlib.pyplot for plotting data
numpy to handle array functions
PIL for plotting and handling preview (png/jpg) images
reproject for coordinate transformations and projections
%matplotlib inline
from astropy.coordinates import SkyCoord
from astroquery.mast import Observations
from astropy.visualization import make_lupton_rgb
from astropy.wcs import WCS
import astropy.units as u
import astropy.io.fits as fits
import matplotlib.pyplot as plt
import numpy as np
import PIL
import reproject
This cell updates some of the settings in matplotlib
to use larger font sizes in the figures:
#Update Plotting Parameters
params = {'axes.labelsize': 12, 'xtick.labelsize': 12, 'ytick.labelsize': 12,
'text.usetex': False, 'lines.linewidth': 1,
'axes.titlesize': 18, 'font.family': 'serif', 'font.size': 12}
plt.rcParams.update(params)
Accessing MaNGA data at MAST#
The SDSS Legacy Archive at MAST hosts all of the science-ready data products from the SDSS-IV MaNGA Survey, which includes data for over 10,000 different nearby galaxies taken with the Apache Point Observatory SDSS-2.5m telescope. This notebook will demonstrate how to search and download MaNGA data using MAST.
Querying all MaNGA data#
Searching for MaNGA data is straightforward with astroquery.mast
. In this example, we use Observations.query_criteria
and search for provenance_name = 'MaNGA'
. This will return a table describing all of the MaNGA data hosted by the MAST archive.
Other useful search parameters for MaNGA data might include:
obs_collection = 'SDSS'
: searches for all SDSS datatarget_classification = 'GALAXY'
: searches for only galaxiesobs_id
to search for specific targets
# Search for MaNGA data
manga_obs_list = Observations.query_criteria(provenance_name='MaNGA')
# Display First Ten Entries in Table
manga_obs_list[:10]
intentType | obs_collection | provenance_name | instrument_name | project | filters | wavelength_region | target_name | target_classification | obs_id | s_ra | s_dec | dataproduct_type | proposal_pi | calib_level | t_min | t_max | t_exptime | em_min | em_max | obs_title | t_obs_release | proposal_id | proposal_type | sequence_number | s_region | jpegURL | dataURL | dataRights | mtFlag | srcDen | obsid | objID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str7 | str4 | str5 | str5 | str4 | str4 | str7 | str9 | str9 | str22 | float64 | float64 | str4 | str18 | int64 | float64 | float64 | float64 | float64 | float64 | str59 | float64 | str3 | str1 | int64 | str53 | str37 | str61 | str6 | bool | float64 | str9 | str9 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-601561 | GALAXY | sdss_manga_12696-1901 | 13.943292 | 0.6450414 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 13.943292 0.6450414 0.001736111111111111 | mast:SDSS/manga/12696/1901/1901.png | mast:SDSS/manga/12696/1901/manga-12696-1901-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291748 | 635473185 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-32796 | GALAXY | sdss_manga_12696-12704 | 14.374275 | 0.10294809 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 14.374275 0.10294809 0.0045138888888888885 | mast:SDSS/manga/12696/12704/12704.png | mast:SDSS/manga/12696/12704/manga-12696-12704-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291749 | 635473584 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-32827 | GALAXY | sdss_manga_12696-12705 | 14.560282 | -0.29682866 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 14.560282 -0.29682866 0.0045138888888888885 | mast:SDSS/manga/12696/12705/12705.png | mast:SDSS/manga/12696/12705/manga-12696-12705-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291750 | 635473984 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-32223 | GALAXY | sdss_manga_12696-12702 | 13.427716 | -1.0851671 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 13.427716 -1.0851671 0.0045138888888888885 | mast:SDSS/manga/12696/12702/12702.png | mast:SDSS/manga/12696/12702/manga-12696-12702-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291751 | 635474496 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-32708 | GALAXY | sdss_manga_12696-12701 | 13.976234 | -0.92219584 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 13.976234 -0.92219584 0.0045138888888888885 | mast:SDSS/manga/12696/12701/12701.png | mast:SDSS/manga/12696/12701/manga-12696-12701-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291752 | 635474974 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-32623 | GALAXY | sdss_manga_12696-3703 | 14.197601 | -0.92006382 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 14.197601 -0.92006382 0.0024305555555555556 | mast:SDSS/manga/12696/3703/3703.png | mast:SDSS/manga/12696/3703/manga-12696-3703-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291753 | 635475119 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-32786 | GALAXY | sdss_manga_12696-6103 | 14.210907 | 0.34647026 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 14.210907 0.34647026 0.003125 | mast:SDSS/manga/12696/6103/6103.png | mast:SDSS/manga/12696/6103/manga-12696-6103-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291754 | 635475317 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-32691 | GALAXY | sdss_manga_12696-6102 | 14.292417 | -0.34695556 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 14.292417 -0.34695556 0.003125 | mast:SDSS/manga/12696/6102/6102.png | mast:SDSS/manga/12696/6102/manga-12696-6102-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291755 | 635475480 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-107844 | GALAXY | sdss_manga_12696-3702 | 14.365107 | -0.47157688 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 14.365107 -0.47157688 0.0024305555555555556 | mast:SDSS/manga/12696/3702/3702.png | mast:SDSS/manga/12696/3702/manga-12696-3702-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291756 | 635475604 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 1-32715 | GALAXY | sdss_manga_12696-12703 | 14.185601 | -0.87482496 | cube | SDSS Collaboration | 3 | 59080.0 | 59083.0 | 13501.2 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 14.185601 -0.87482496 0.0045138888888888885 | mast:SDSS/manga/12696/12703/12703.png | mast:SDSS/manga/12696/12703/manga-12696-12703-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291757 | 635475953 |
Searching for a specific galaxy#
Let’s narrow down the search to one particular galaxy: MaNGA galaxy 7443-12703, also known as “Mrk 848B”. This is an interacting galaxy pair currently undergoing a merger event: the two galaxies are colliding and will eventually merge together into one large galaxy. Studying merger events like this one help us understand how galaxies grow and evolve over time.
We can search for this galaxy in particular using the obs_id
keyword:
# Search for MaNGA galaxy 7443-12703
manga_obs_list = Observations.query_criteria(provenance_name='MaNGA',
obs_id='sdss_manga_7443-12703')
# Display results
manga_obs_list
intentType | obs_collection | provenance_name | instrument_name | project | filters | wavelength_region | target_name | target_classification | obs_id | s_ra | s_dec | dataproduct_type | proposal_pi | calib_level | t_min | t_max | t_exptime | em_min | em_max | obs_title | t_obs_release | proposal_id | proposal_type | sequence_number | s_region | jpegURL | dataURL | dataRights | mtFlag | srcDen | obsid | objID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str7 | str4 | str5 | str5 | str4 | str4 | str7 | str9 | str6 | str21 | float64 | float64 | str4 | str18 | int64 | float64 | float64 | float64 | float64 | float64 | str59 | float64 | str3 | str1 | int64 | str48 | str36 | str59 | str6 | bool | float64 | str9 | str9 |
science | SDSS | MaNGA | MaNGA | SDSS | None | OPTICAL | 12-193481 | GALAXY | sdss_manga_7443-12703 | 229.52558 | 42.745842 | cube | SDSS Collaboration | 3 | 56741.0 | 56745.0 | 13501.5 | 362.09999999999997 | 1035.4 | Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) | 59554.0 | N/A | -- | -- | CIRCLE 229.52558 42.745842 0.0045138888888888885 | mast:SDSS/manga/7443/12703/12703.png | mast:SDSS/manga/7443/12703/manga-7443-12703-LOGCUBE.fits.gz | PUBLIC | False | nan | 232291699 | 636473677 |
Downloading MaNGA data products#
List all of the data products availble for this galaxy using Observations.get_product_list()
.
There are 13 total files available for this galaxy, which include include a preview image (12703.png
), the 3D MaNGA spectral cube (manga-7443-12703-LOGCUBE.fits.gz
), and the MaNGA MAP file (manga-7443-12703-MAPS-HYB10-MILESHC-MASTARSSP.fits.gz
) which contains measurements and parameters from the MaNGA data analysis pipeline.
More information on all of these products can be seen in the search results table:
# Get list of products (files) associated with this observation
manga_products_list = Observations.get_product_list(manga_obs_list)
# Show Products List
manga_products_list
obsID | obs_collection | dataproduct_type | obs_id | description | type | dataURI | productType | productGroupDescription | productSubGroupDescription | productDocumentationURL | project | prvversion | proposal_id | productFilename | size | parent_obsid | dataRights | calib_level | filters |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str9 | str4 | str12 | str21 | str256 | str1 | str83 | str7 | str28 | str14 | str1 | str5 | str6 | str3 | str56 | int64 | str9 | str6 | int64 | str4 |
232291699 | SDSS | cube | sdss_manga_7443-12703 | Preview-Full | S | mast:SDSS/manga/7443/12703/12703.png | PREVIEW | -- | -- | -- | MaNGA | v3_1_1 | N/A | 12703.png | 238960 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA IFU Data Cube, with linear wavelength sampling | S | mast:SDSS/manga/7443/12703/manga-7443-12703-LINCUBE.fits.gz | SCIENCE | -- | CUBE | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-LINCUBE.fits.gz | 308685608 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA Data Analysis Maps. Same as HYB10-MILESHC-MASTARSSP except hierarchically clustered templates from MaStar are used to fit the stellar continuum in the emission-line module. | S | mast:SDSS/manga/7443/12703/manga-7443-12703-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz | SCIENCE | -- | MAPS | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-MAPS-HYB10-MILESHC-MASTARHC2.fits.gz | 11180464 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA Data Analysis Maps. Analysis of each individual spaxel with S/N>1 ; spaxels must have a valid continuum fit for an emission-line model to be fit. | S | mast:SDSS/manga/7443/12703/manga-7443-12703-MAPS-SPX-MILESHC-MASTARSSP.fits.gz | SCIENCE | -- | MAPS | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-MAPS-SPX-MILESHC-MASTARSSP.fits.gz | 10814176 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA Data Analysis Maps. Spaxels are binned to S/N~10 using the Voronoi binning algorithm; all binned spectra are treated independently. | S | mast:SDSS/manga/7443/12703/manga-7443-12703-MAPS-VOR10-MILESHC-MASTARSSP.fits.gz | SCIENCE | -- | MAPS | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-MAPS-VOR10-MILESHC-MASTARSSP.fits.gz | 6018405 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA Data Analysis Model Cubes. Same as HYB10-MILESHC-MASTARSSP except hierarchically clustered templates from MaStar are used to fit the stellar continuum in the emission-line module. | S | mast:SDSS/manga/7443/12703/manga-7443-12703-LOGCUBE-HYB10-MILESHC-MASTARHC2.fits.gz | SCIENCE | -- | MODELCUBE | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-LOGCUBE-HYB10-MILESHC-MASTARHC2.fits.gz | 178831813 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA Data Analysis Model Cubes. Analysis of each individual spaxel with S/N>1 ; spaxels must have a valid continuum fit for an emission-line model to be fit. | S | mast:SDSS/manga/7443/12703/manga-7443-12703-LOGCUBE-SPX-MILESHC-MASTARSSP.fits.gz | SCIENCE | -- | MODELCUBE | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-LOGCUBE-SPX-MILESHC-MASTARSSP.fits.gz | 248679687 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SSDSS MaNGA Data Analysis Model Cubes. Spaxels are binned to S/N~10 using the Voronoi binning algorithm; all binned spectra are treated independently. | S | mast:SDSS/manga/7443/12703/manga-7443-12703-LOGCUBE-VOR10-MILESHC-MASTARSSP.fits.gz | SCIENCE | -- | MODELCUBE | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-LOGCUBE-VOR10-MILESHC-MASTARSSP.fits.gz | 132859770 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA Row-Stacked Spectra, with linear wavelength sampling | S | mast:SDSS/manga/7443/12703/manga-7443-12703-LINRSS.fits.gz | SCIENCE | -- | RSS | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-LINRSS.fits.gz | 247013854 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA IFU Data Cube, with logarithmic wavelength sampling | S | mast:SDSS/manga/7443/12703/manga-7443-12703-LOGCUBE.fits.gz | SCIENCE | Minimum Recommended Products | CUBE | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-LOGCUBE.fits.gz | 212028256 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA Data Analysis Maps. Stellar-continuum analysis of spectra binned to S/N~10 for the stellar kinematics, with hierarchically clustered MILES templates; emission-line analysis done on individual spaxels, with MaStar simple stellar population models | S | mast:SDSS/manga/7443/12703/manga-7443-12703-MAPS-HYB10-MILESHC-MASTARSSP.fits.gz | SCIENCE | Minimum Recommended Products | MAPS | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-MAPS-HYB10-MILESHC-MASTARSSP.fits.gz | 11162876 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA DAP Model Cubes. Stellar-continuum analysis of spectra binned to S/N~10 for the stellar kinematics, with hierarchically clustered MILES templates; emission-line analysis done on individual spaxels, with MaStar simple stellar population models | S | mast:SDSS/manga/7443/12703/manga-7443-12703-LOGCUBE-HYB10-MILESHC-MASTARSSP.fits.gz | SCIENCE | Minimum Recommended Products | MODELCUBE | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-LOGCUBE-HYB10-MILESHC-MASTARSSP.fits.gz | 179163798 | 232291699 | PUBLIC | 3 | None |
232291699 | SDSS | cube | sdss_manga_7443-12703 | SDSS MaNGA Row-Stacked Spectra, with logarithmic wavelength sampling | S | mast:SDSS/manga/7443/12703/manga-7443-12703-LOGRSS.fits.gz | SCIENCE | Minimum Recommended Products | RSS | -- | MaNGA | v3_1_1 | N/A | manga-7443-12703-LOGRSS.fits.gz | 169503381 | 232291699 | PUBLIC | 3 | None |
232325022 | SDSS | measurements | sdss_manga_drpall | SDSS MaNGA Data Reduction Pipline (DRP) summary catalog. This provides collated summary tables on the observations and data reduction from MaNGA, including targeting information, photometry, and reduction quality for each observation. | D | mast:SDSS/manga/drpall-v3_1_1.fits | SCIENCE | -- | MaNGA Catalogs | -- | MaNGA | v3_1_1 | N/A | drpall-v3_1_1.fits | 75360960 | 232291699 | PUBLIC | 3 | -- |
232325023 | SDSS | measurements | sdss_manga_dapall | SDSS MaNGA Data Analysis Pipeline (DAP) summary catalog. This provides collated summary information from the analysis output of MaNGA observations, including distance and redshift estimates, stellar and gas velocities, and spectral index measurements. | D | mast:SDSS/manga/dapall-v3_1_1-3.1.0.fits | SCIENCE | -- | MaNGA Catalogs | -- | MaNGA | v3_1_1 | N/A | dapall-v3_1_1-3.1.0.fits | 146030400 | 232291699 | PUBLIC | 3 | -- |
Now we will download some of these files using Observations.download_products()
. To start, let’s download the preview image to see what this galaxy pair looks like. The parameters used are:
manga_products_list
: the list of products from the previous cellproductType='PREVIEW'
: limit the list to preview files onlyflat=True
: download the data into the current directory
The download will print a status message when completed.
print(Observations.download_products(manga_products_list, productType='PREVIEW', flat=True))
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:SDSS/manga/7443/12703/12703.png to ./12703.png ...
[Done]
Local Path Status Message URL
----------- -------- ------- ----
./12703.png COMPLETE None None
The Right Ascension (RA) and declination (Dec) coordinates for this image are contained in the file as a World Coordinate System (WCS) axis. Using astropy.wcs.WCS()
, we can retrieve this information from the file and use it in the plot.
def get_wcs_from_png(file):
""" Retrieves WCS information from png file """
with PIL.Image.open(file) as ii:
ww = {}
for k, v in ii.info.items():
try:
ww[k] = float(v)
except ValueError:
ww[k] = v
ww.pop("WCSAXES")
return WCS(ww)
Now let’s plot this preview image to see what these galaxies look like!
# Open image file
manga_preview = np.asarray(PIL.Image.open('12703.png'))
# Set up plot using WCS projection from the file
plt.subplot(projection=get_wcs_from_png('12703.png'))
# Show the image
plt.imshow(manga_preview)
# Label title and axes
plt.title('MaNGA Preview Image')
plt.xlabel('Right Ascension')
plt.ylabel('Declination')
plt.show()
Next, let’s download the Minimum Recommended Products. These are the recommended files to download for this MaNGA galaxy. You can select the Minimum Recommended Products using mrp_only=True
. This will download 4 files.
# Download Minimum Recommended Products
Observations.download_products(manga_products_list, mrp_only=True, flat=True)
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:SDSS/manga/7443/12703/manga-7443-12703-LOGCUBE-HYB10-MILESHC-MASTARSSP.fits.gz to ./manga-7443-12703-LOGCUBE-HYB10-MILESHC-MASTARSSP.fits.gz ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:SDSS/manga/7443/12703/manga-7443-12703-LOGCUBE.fits.gz to ./manga-7443-12703-LOGCUBE.fits.gz ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:SDSS/manga/7443/12703/manga-7443-12703-LOGRSS.fits.gz to ./manga-7443-12703-LOGRSS.fits.gz ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:SDSS/manga/7443/12703/manga-7443-12703-MAPS-HYB10-MILESHC-MASTARSSP.fits.gz to ./manga-7443-12703-MAPS-HYB10-MILESHC-MASTARSSP.fits.gz ...
[Done]
Local Path | Status | Message | URL |
---|---|---|---|
str58 | str8 | object | object |
./manga-7443-12703-LOGCUBE-HYB10-MILESHC-MASTARSSP.fits.gz | COMPLETE | None | None |
./manga-7443-12703-LOGCUBE.fits.gz | COMPLETE | None | None |
./manga-7443-12703-LOGRSS.fits.gz | COMPLETE | None | None |
./manga-7443-12703-MAPS-HYB10-MILESHC-MASTARSSP.fits.gz | COMPLETE | None | None |
Plotting velocity and flux maps from MaNGA#
Now that the MaNGA data has been downloaded, we can plot some of the galaxy properties. The ManGA MAP file (manga-7443-12703-MAPS-HYB10-MILESHC-MASTARSSP.fits.gz
) contains the output and results from the MaNGA Data Analysis Pipeline (DAP). This example is based off of the MaNGA DAP Python Tutorial, and plots the g-band flux, the H-alpha emission line flux, and the stellar velocity field from MaNGA.
The full description of contents of the the MaNGA MAP file is available here.
Let’s open the file and view some basic information:
# Open MaNGA MAP file
manga_map = fits.open('manga-7443-12703-MAPS-HYB10-MILESHC-MASTARSSP.fits.gz')
# Print information on file extensions
manga_map.info()
Filename: manga-7443-12703-MAPS-HYB10-MILESHC-MASTARSSP.fits.gz
No. Name Ver Type Cards Dimensions Format
0 PRIMARY 1 PrimaryHDU 147 ()
1 SPX_SKYCOO 1 ImageHDU 44 (74, 74, 2) float32
2 SPX_ELLCOO 1 ImageHDU 49 (74, 74, 4) float32
3 SPX_MFLUX 1 ImageHDU 37 (74, 74) float32
4 SPX_MFLUX_IVAR 1 ImageHDU 38 (74, 74) float32
5 SPX_SNR 1 ImageHDU 35 (74, 74) float32
6 BINID 1 ImageHDU 46 (74, 74, 5) int32
7 BIN_LWSKYCOO 1 ImageHDU 44 (74, 74, 2) float32
8 BIN_LWELLCOO 1 ImageHDU 49 (74, 74, 4) float32
9 BIN_AREA 1 ImageHDU 36 (74, 74) float32
10 BIN_FAREA 1 ImageHDU 35 (74, 74) float32
11 BIN_MFLUX 1 ImageHDU 38 (74, 74) float32
12 BIN_MFLUX_IVAR 1 ImageHDU 39 (74, 74) float32
13 BIN_MFLUX_MASK 1 ImageHDU 38 (74, 74) int32
14 BIN_SNR 1 ImageHDU 35 (74, 74) float32
15 STELLAR_VEL 1 ImageHDU 38 (74, 74) float32
16 STELLAR_VEL_IVAR 1 ImageHDU 39 (74, 74) float32
17 STELLAR_VEL_MASK 1 ImageHDU 38 (74, 74) int32
18 STELLAR_SIGMA 1 ImageHDU 38 (74, 74) float32
19 STELLAR_SIGMA_IVAR 1 ImageHDU 39 (74, 74) float32
20 STELLAR_SIGMA_MASK 1 ImageHDU 38 (74, 74) int32
21 STELLAR_SIGMACORR 1 ImageHDU 44 (74, 74, 2) float32
22 STELLAR_FOM 1 ImageHDU 59 (74, 74, 9) float32
23 EMLINE_SFLUX 1 ImageHDU 79 (74, 74, 35) float32
24 EMLINE_SFLUX_IVAR 1 ImageHDU 80 (74, 74, 35) float32
25 EMLINE_SFLUX_MASK 1 ImageHDU 79 (74, 74, 35) int32
26 EMLINE_SEW 1 ImageHDU 79 (74, 74, 35) float32
27 EMLINE_SEW_CNT 1 ImageHDU 77 (74, 74, 35) float32
28 EMLINE_SEW_IVAR 1 ImageHDU 80 (74, 74, 35) float32
29 EMLINE_SEW_MASK 1 ImageHDU 79 (74, 74, 35) int32
30 EMLINE_GFLUX 1 ImageHDU 79 (74, 74, 35) float32
31 EMLINE_GFLUX_IVAR 1 ImageHDU 80 (74, 74, 35) float32
32 EMLINE_GFLUX_MASK 1 ImageHDU 79 (74, 74, 35) int32
33 EMLINE_GEW 1 ImageHDU 79 (74, 74, 35) float32
34 EMLINE_GEW_CNT 1 ImageHDU 77 (74, 74, 35) float32
35 EMLINE_GEW_IVAR 1 ImageHDU 80 (74, 74, 35) float32
36 EMLINE_GEW_MASK 1 ImageHDU 79 (74, 74, 35) int32
37 EMLINE_GVEL 1 ImageHDU 79 (74, 74, 35) float32
38 EMLINE_GVEL_IVAR 1 ImageHDU 80 (74, 74, 35) float32
39 EMLINE_GVEL_MASK 1 ImageHDU 79 (74, 74, 35) int32
40 EMLINE_GSIGMA 1 ImageHDU 79 (74, 74, 35) float32
41 EMLINE_GSIGMA_IVAR 1 ImageHDU 80 (74, 74, 35) float32
42 EMLINE_GSIGMA_MASK 1 ImageHDU 79 (74, 74, 35) int32
43 EMLINE_INSTSIGMA 1 ImageHDU 77 (74, 74, 35) float32
44 EMLINE_TPLSIGMA 1 ImageHDU 77 (74, 74, 35) float32
45 EMLINE_GA 1 ImageHDU 77 (74, 74, 35) float32
46 EMLINE_GANR 1 ImageHDU 76 (74, 74, 35) float32
47 EMLINE_FOM 1 ImageHDU 59 (74, 74, 9) float32
48 EMLINE_LFOM 1 ImageHDU 76 (74, 74, 35) float32
49 SPECINDEX 1 ImageHDU 135 (74, 74, 46) float32
50 SPECINDEX_IVAR 1 ImageHDU 136 (74, 74, 46) float32
51 SPECINDEX_MASK 1 ImageHDU 90 (74, 74, 46) int32
52 SPECINDEX_CORR 1 ImageHDU 87 (74, 74, 46) float32
53 SPECINDEX_MODEL 1 ImageHDU 87 (74, 74, 46) float32
54 SPECINDEX_BF 1 ImageHDU 135 (74, 74, 46) float32
55 SPECINDEX_BF_IVAR 1 ImageHDU 136 (74, 74, 46) float32
56 SPECINDEX_BF_MASK 1 ImageHDU 90 (74, 74, 46) int32
57 SPECINDEX_BF_CORR 1 ImageHDU 87 (74, 74, 46) float32
58 SPECINDEX_BF_MODEL 1 ImageHDU 87 (74, 74, 46) float32
59 SPECINDEX_WGT 1 ImageHDU 135 (74, 74, 46) float32
60 SPECINDEX_WGT_IVAR 1 ImageHDU 136 (74, 74, 46) float32
61 SPECINDEX_WGT_MASK 1 ImageHDU 90 (74, 74, 46) int32
62 SPECINDEX_WGT_CORR 1 ImageHDU 87 (74, 74, 46) float32
63 SPECINDEX_WGT_MODEL 1 ImageHDU 87 (74, 74, 46) float32
To make the plot in the next cell, we will use three different extensions of the MAP file. Here is the description of each of these extensions from the data model:
SPX_MFLUX
Description: “g-band-weighted mean flux, not corrected for Galactic extinction or internal attenuation.”
The
EMLINE_GFLUX
Description: “gaussian profile integrated flux from a combined continuum+emission-line fit. The flux ratio of the [NeIII], [OIII], [OI], [NII], and [S III] lines are fixed and cannot be treated as independent measurements. The emission-line fluxes account for Galactic reddening using the E(B-V) (copied to the DAP primary headers, see the EBVGAL header keyword) value provided by the DRP header and assuming an O’Donnell (1994, ApJ, 422, 158) reddening law; however, no attenuation correction is applied for dust internal to the galaxy. See here for more information.”
Specifically, we will be using the H-alpha emission line flux from this extension
STELLAR_VEL
Description: “Line-of-sight stellar velocity, relative to the input guess redshift (given as cz by the keyword SCINPVEL in the header of the PRIMARY extension, and most often identical to the NSA redshift).”
#=========================================
# Set up Plot
#=========================================
plt.figure(figsize=(12, 6))
# Grab the WCS information from the header
manga_wcs = WCS(manga_map['SPX_MFLUX'].header)
ax1 = plt.subplot(131, projection=manga_wcs)
ax2 = plt.subplot(132, projection=manga_wcs)
ax3 = plt.subplot(133, projection=manga_wcs)
for ax in [ax1, ax2, ax3]:
ax.set_xlabel('Right Ascension')
ax.set_ylabel('Declination')
#=========================================
# Subplot 1: MaNGA Flux Map
#=========================================
# The 'SPX_MFLUX' ext contains the g-band-weighted mean flux
manga_flux = manga_map['SPX_MFLUX'].data
manga_flux[manga_flux == 0] = np.nan # mask for quality data
# Plot image
im = ax1.imshow(manga_flux, cmap='Greys_r')
ax1.set_title('MaNGA g-band Flux')
plt.colorbar(im, label=r'Flux [$10^{-17}$ erg/s/cm$^{2}$/Å/spaxel]',
orientation='horizontal')
#=========================================
# Subplot 2: MaNGA H-Alpha Emission Map
#=========================================
# Define the emission line indexes for this ext
emline = {}
for k, v in manga_map['EMLINE_GFLUX'].header.items():
if k[0] == 'C':
try:
i = int(k[1:])-1
except ValueError:
continue
emline[v] = i
# The 'EMLINE_GFLUX' ext contains the emission line measurements
h_alpha_flux = np.copy(manga_map['EMLINE_GFLUX'].data[emline['Ha-6564']])
h_alpha_flux[h_alpha_flux == 0] = np.nan # mask for quality data
# Plot image
im = ax2.imshow(h_alpha_flux, cmap='magma', vmin=0, vmax=200)
plt.colorbar(im, label=r'H-$\alpha$ Emission [$10^{-17}$ erg/s/cm$^{2}$/spaxel]',
orientation='horizontal')
ax2.set_title(r'H-$\alpha$ Emission')
#=========================================
# Subplot 3: MaNGA Stellar Velocity Field
#=========================================
# The 'STELLAR_VEL' ext contains the stellar velocity measurements
qual_mask = manga_map['STELLAR_VEL'].header['QUALDATA'] # mask for quality data
velocity_map = np.ma.MaskedArray(manga_map['STELLAR_VEL'].data,
mask=manga_map[qual_mask].data > 0)
# plot Image
im = ax3.imshow(velocity_map, interpolation='nearest',
vmin=-125, vmax=125, cmap='RdBu_r')
ax3.set_title(r'Stellar Velocity')
plt.colorbar(im, label=r'Stellar Velocity [km/s]',
orientation='horizontal')
#plt.subplots_adjust(hspace=0)
plt.tight_layout()
plt.show()
Searching for HST observations of this galaxy#
Coordinate search using astroquery.mast#
Now let’s search for HST obersvations of this same galaxy. Similar to before, we will be using Observations.query_criteria()
to search the MAST archive, but this time, we will search for HST observations (obs_collection='HST'
) near the coordinates of this MaNGA galaxy pair.
# Retrieve RA and DEC of MaNGA observations
ra = manga_obs_list['s_ra'][0]
dec = manga_obs_list['s_dec'][0]
# make a SkyCoord object from these coordinates
coord = SkyCoord(ra=ra*u.deg, dec=dec*u.deg)
print(coord)
# Search for HST observations based on coordinates
hst_obs = Observations.query_criteria(# Search by coordinates
coordinates=coord,
# Search for HST observations
obs_collection='HST',
# Select only Science observations (not calibration files)
intentType='science',
# Select calibrated reduced observations
provenance_name='CAL*')
# Display Results
hst_obs
<SkyCoord (ICRS): (ra, dec) in deg
(229.52558, 42.745842)>
intentType | obs_collection | provenance_name | instrument_name | project | filters | wavelength_region | target_name | target_classification | obs_id | s_ra | s_dec | dataproduct_type | proposal_pi | calib_level | t_min | t_max | t_exptime | em_min | em_max | obs_title | t_obs_release | proposal_id | proposal_type | sequence_number | s_region | jpegURL | dataURL | dataRights | mtFlag | srcDen | obsid | objID | objID1 | distance |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str7 | str3 | str6 | str7 | str3 | str5 | str8 | str6 | str72 | str9 | float64 | float64 | str5 | str16 | int64 | float64 | float64 | float64 | float64 | float64 | str92 | float64 | str5 | str2 | int64 | str1018 | str34 | str35 | str6 | bool | float64 | str8 | str9 | str9 | float64 |
science | HST | CALWF3 | WFC3/IR | HST | F160W | INFRARED | VV-705 | GALAXY;INTERACTING GALAXY;MULTIPLE NUCLEI;ULTRALUMINOUS IR GAL;STARBURST | ia1e42010 | 229.52625 | 42.74361111111 | image | Surace, Jason A. | 3 | 55191.08020185185 | 55191.14344517361 | 2395.398924 | 1393.8999999999999 | 1692.4 | HST NICMOS Survey of the Nuclear Regions of Luminous Infrared Galaxies in the Local Universe | 55556.22577551 | 11235 | GO | -- | POLYGON -130.45141896 42.72726823 -130.45139424562964 42.727623085811551 -130.45085739 42.72760092 -130.45083267175158 42.727955780706409 -130.45029576000002 42.72793361 -130.44791957 42.76202341 -130.44881279242628 42.762060290893743 -130.44877189 42.76264689 -130.50066389 42.76477749 -130.50068833934091 42.764422591918347 -130.50122566 42.76444453 -130.50125010335393 42.764089669031847 -130.5017873 42.7641116 -130.50413399 42.73002074 -130.50324120188574 42.729984288688932 -130.50328157 42.72939763 -130.45141896 42.72726823 -130.45141896 42.72726823 | mast:HST/product/ia1e42010_drz.jpg | mast:HST/product/ia1e42010_drz.fits | PUBLIC | False | nan | 24794549 | 673643046 | 673643046 | 0.0 |
science | HST | CALACS | ACS/WFC | HST | F814W | OPTICAL | VV705 | GALAXY;INTERACTING GALAXY | j9cv55020 | 229.52625 | 42.74361111111 | image | Evans, Aaron S. | 3 | 53688.73142982639 | 53688.74207797454 | 760.0 | 708.0 | 959.0 | An ACS Survey of a Complete Sample of Luminous Infrared Galaxies in the Local Universe | 54054.39680547 | 10592 | GO | -- | POLYGON -130.43207268999996 42.710149770000072 -130.43380304000004 42.738738559999888 -130.43390147880342 42.738740292976125 -130.43395158999988 42.739567809999961 -130.43429750999272 42.739573898841904 -130.43622134999993 42.766746739999988 -130.43631144527563 42.766749199904545 -130.43637000999993 42.767575989999933 -130.51272945999986 42.769635319999914 -130.51073934999991 42.742010469999961 -130.51064930025817 42.742008068768754 -130.51058976999991 42.741181329999925 -130.48078808475617 42.740382738212219 -130.51120778999976 42.740901790000045 -130.50944171000017 42.712314169999942 -130.50934332360208 42.712312501929482 -130.50929222999994 42.711485029999928 -130.43207268999996 42.710149770000072 -130.43207268999996 42.710149770000072 | mast:HST/product/j9cv55020_drz.jpg | mast:HST/product/j9cv55020_drz.fits | PUBLIC | False | nan | 24826350 | 679076123 | 679076123 | 0.0 |
science | HST | CALACS | ACS/WFC | HST | F435W | OPTICAL | VV705 | GALAXY;INTERACTING GALAXY | j9cv55010 | 229.52625 | 42.74361111111 | image | Evans, Aaron S. | 3 | 53688.666267974535 | 53688.685249456015 | 1320.0 | 370.0 | 479.99999999999994 | An ACS Survey of a Complete Sample of Luminous Infrared Galaxies in the Local Universe | 54054.37582171 | 10592 | GO | -- | POLYGON -130.43192424000009 42.709320519999878 -130.43365449999982 42.737909309999957 -130.4337529317022 42.737911043013639 -130.43380304000004 42.738738559999888 -130.43390147880342 42.738740292976125 -130.43395158999988 42.739567809999961 -130.4342075292484 42.739572315111893 -130.4360726999999 42.765917500000093 -130.43616278895598 42.765919959882218 -130.43622134999993 42.766746739999988 -130.43631144527563 42.766749199904545 -130.43637000999993 42.767575989999933 -130.51272945999986 42.769635319999914 -130.51073934999991 42.742010469999961 -130.51064930025817 42.742008068768754 -130.51058976999991 42.741181329999925 -130.51049972627087 42.741178928778268 -130.51047888276389 42.740889446885376 -130.51120778999976 42.740901790000045 -130.50944171000017 42.712314169999942 -130.50934332360208 42.712312501929482 -130.50929222999994 42.711485029999928 -130.50919384069635 42.711483361716873 -130.50914275000005 42.710655890000126 -130.43192424000009 42.709320519999878 -130.43192424000009 42.709320519999878 | mast:HST/product/j9cv55010_drz.jpg | mast:HST/product/j9cv55010_drz.fits | PUBLIC | False | nan | 24826349 | 679096080 | 679096080 | 0.0 |
The table of results shown above tells us that there are three observations of this galaxy from HST, in three different filters: F160W, F435W, and F814W. Let’s see what data products are available associated with these observations:
hst_products = Observations.get_product_list(hst_obs)
# Filter product list
hst_products = Observations.filter_products(hst_products,
# Select science files
productType="SCIENCE",
# Recommended Products
productGroupDescription="Minimum Recommended Products",
# Select DRZ files - the calibrated combined images
productSubGroupDescription='DRZ')
hst_products
obsID | obs_collection | dataproduct_type | obs_id | description | type | dataURI | productType | productGroupDescription | productSubGroupDescription | productDocumentationURL | project | prvversion | proposal_id | productFilename | size | parent_obsid | dataRights | calib_level | filters |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
str8 | str3 | str5 | str35 | str64 | str1 | str95 | str9 | str28 | str11 | str1 | str7 | str20 | str5 | str50 | int64 | str8 | str6 | int64 | str9 |
24794549 | HST | image | ia1e42010 | DADS DRZ file - Calibrated combined image ACS/WFC3/WFPC2/STIS | D | mast:HST/product/ia1e42010_drz.fits | SCIENCE | Minimum Recommended Products | DRZ | -- | CALWF3 | 3.7.2 (Apr-15-2024) | 11235 | ia1e42010_drz.fits | 13587840 | 24794549 | PUBLIC | 3 | F160W |
24826349 | HST | image | j9cv55010 | DADS DRZ file - Calibrated combined image ACS/WFC3/WFPC2/STIS | D | mast:HST/product/j9cv55010_drz.fits | SCIENCE | Minimum Recommended Products | DRZ | -- | CALACS | DrizzlePac 3.9.0rc2 | 10592 | j9cv55010_drz.fits | 221261760 | 24826349 | PUBLIC | 3 | F435W |
24826350 | HST | image | j9cv55020 | DADS DRZ file - Calibrated combined image ACS/WFC3/WFPC2/STIS | D | mast:HST/product/j9cv55020_drz.fits | SCIENCE | Minimum Recommended Products | DRZ | -- | CALACS | DrizzlePac 3.9.0rc2 | 10592 | j9cv55020_drz.fits | 217800000 | 24826350 | PUBLIC | 3 | F814W |
With our products selected, we can proceed to download. We’ll use flat=True
to put them all into the same directory.
# Download products
Observations.download_products(hst_products, flat=True)
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ia1e42010_drz.fits to ./ia1e42010_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/j9cv55010_drz.fits to ./j9cv55010_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/j9cv55020_drz.fits to ./j9cv55020_drz.fits ...
[Done]
Local Path | Status | Message | URL |
---|---|---|---|
str20 | str8 | object | object |
./ia1e42010_drz.fits | COMPLETE | None | None |
./j9cv55010_drz.fits | COMPLETE | None | None |
./j9cv55020_drz.fits | COMPLETE | None | None |
Plot the HST images#
Let’s plot the three HST images.
# Open files
f160w = fits.open('ia1e42010_drz.fits')
f435w = fits.open('j9cv55010_drz.fits')
f814w = fits.open('j9cv55020_drz.fits')
f160w_wcs = WCS(f160w[1].header)
f435w_wcs = WCS(f435w[1].header)
f814w_wcs = WCS(f814w[1].header)
#=========================================
# Set up Plot
#=========================================
fig = plt.figure(figsize=(15, 5))
ax1 = plt.subplot(131, projection=f160w_wcs)
ax2 = plt.subplot(132, projection=f435w_wcs)
ax3 = plt.subplot(133, projection=f814w_wcs)
for ax in [ax1, ax2, ax3]:
ax.set_xlabel('Right Ascension')
ax.set_ylabel('Declination')
#=========================================
# Subplot 1: F160W filter image
#=========================================
# Note - this image is upside-down compared to the other two
fits_file = f160w
ax1.imshow(fits_file[1].data, cmap='Greys_r', vmin=0, vmax=2.5, origin='lower')
ax1.set_title(f"{fits_file[0].header['INSTRUME']}/{fits_file[0].header['FILTER']}")
#=========================================
# Subplot 2: F435W filter image
#=========================================
fits_file = f435w
wcs = WCS(fits_file[1].header)
ax2.imshow(fits_file[1].data, cmap='Greys_r', vmin=0, vmax=0.5, origin='lower')
ax2.set_title(f"{fits_file[0].header['INSTRUME']}/{fits_file[0].header['FILTER2']}")
#=========================================
# Subplot 3: F814W filter image
#=========================================
fits_file = f814w
wcs = WCS(fits_file[1].header)
ax3.imshow(fits_file[1].data, cmap='Greys_r', vmin=0, vmax=0.5, origin='lower')
ax3.set_title(f"{fits_file[0].header['INSTRUME']}/{fits_file[0].header['FILTER2']}")
plt.tight_layout()
plt.show()
Colorizing HST images with astropy#
We can combine all three HST images here and colorize them using the make_lupton_rgb()
function from astropy. This function takes image data from three filter images, and combines them as an RGB image. In this example, we will order by wavelength and map the IR filter (F160W) to the red channel (‘r’), the F814W filter to the green channel (‘g’), and the F435W filter to the blue channel (‘b’).
Before we colorize the images, however, we need to reproject them onto the same coordinate system. We will resample the F160W and F814W images to the same projection as the F435W image, because the F435W image is the largest.
# Print image shapes:
print(f"F160W shape: {f160w[1].data.shape}")
print(f"F814W shape: {f814w[1].data.shape}")
print(f"F435W shape: {f435w[1].data.shape}")
# Reproject all three HST images into the same frame (using F435W image as base)
# This may take about a minute.
r, _ = reproject.reproject_interp(f160w[1], f435w[1].header)
g, _ = reproject.reproject_interp(f814w[1], f435w[1].header)
b, _ = reproject.reproject_interp(f435w[1], f435w[1].header)
# Colorize image using the three filters
hst_image = make_lupton_rgb(r*0.1, g, b*2.5, Q=4, stretch=0.75)
F160W shape: (996, 1124)
F814W shape: (4297, 4221)
F435W shape: (4358, 4228)
/opt/hostedtoolcache/Python/3.11.11/x64/lib/python3.11/site-packages/astropy/visualization/basic_rgb.py:153: RuntimeWarning: invalid value encountered in cast
return image_rgb.astype(output_dtype)
Our reprojection and colorization is complete! Let’s now plot the image.
# Make plot
plt.figure(figsize=(5, 10))
ax = plt.subplot(projection=f435w_wcs)
# Plot image
ax.imshow(hst_image)
# Zoom in
ax.set_xlim(1800, 2600)
ax.set_ylim(2000, 2900)
# Label Plot
ax.set_xlabel('Right Ascension')
ax.set_ylabel('Declination')
ax.set_title('HST Image (colorized)')
plt.show()
This image looks great! There are certainly a few places where bright spots in one image are affecting the final result; this can be seen as the green speckles across the lower third of the image.
Combining MaNGA and HST data#
Now that we have downloaded both MaNGA and HST data, let’s combine them into one plot to map some of properties of this merging pair of galaxies!
The key to combining the HST and MaNGA data is the World Coordinate System (WCS) transformations done by astropy. Using information from the file headers, astropy.wcs()
will calculate the RA and DEC coordinates corresponding to each pixel in the image, allowing us to project both datasets on the same figure.
# Store WCS for easy coordinate transformations
hst_wcs = WCS(f435w[1].header)
manga_wcs = WCS(manga_map[3].header)
#=========================================
# Set up Plot
#=========================================
plt.figure(figsize=(15, 5))
ax1 = plt.subplot(131, projection=hst_wcs)
ax2 = plt.subplot(132, projection=hst_wcs)
ax3 = plt.subplot(133, projection=hst_wcs)
for ax in [ax1, ax2, ax3]:
# Zoom in
ax.set_xlim(1850, 2550)
ax.set_ylim(2300, 3000)
# Label Axes
ax.set_xlabel('RA')
ax.set_ylabel('Dec')
# Plot Grid
ax.grid(color='white', ls='dotted', alpha=0.5)
#=========================================
# Subplot 1: HST Image
#=========================================
ax1.imshow(hst_image)
ax1.set_title('HST Image (colorized)')
#=========================================
# Subplot 2: MaNGA H-alpha Emission
#=========================================
ax2.set_title(r'MaNGA H-$\alpha$ Flux' + '\n' + r'[$10^{-17}$ erg/s/cm$^{2}$/spaxel]')
h_alpha_flux = np.copy(manga_map['EMLINE_GFLUX'].data[emline['Ha-6564']])
h_alpha_flux[h_alpha_flux == 0] = np.nan # mask for quality data
# Plot H-alpha flux
ax2.imshow(np.log10(h_alpha_flux),
transform=ax2.get_transform(manga_wcs),
cmap='magma', vmin=0, vmax=2)
# Plot MaNGA contours
contour_levels = [1, 10, 20, 50, 100]
contour_labels = [str(c) for c in contour_levels]
fmt = {}
for label_level, label_string in zip(contour_levels, contour_labels):
fmt[label_level] = label_string
contours = ax2.contour(h_alpha_flux,
transform=ax2.get_transform(manga_wcs),
levels=contour_levels, colors='white')
ax2.clabel(contours, contours.levels, inline=True, fmt=fmt, fontsize=12)
#=========================================
# Subplot 3: HST + MaNGA
#=========================================
ax3.set_title(r'HST + MaNGA H-$\alpha$ Contours')
# Plot background HST image
ax3.imshow(hst_image)
# Plot MaNGA contours
contours = ax3.contour(h_alpha_flux,
transform=ax3.get_transform(manga_wcs),
levels=contour_levels, colors='white')
ax3.clabel(contours, contours.levels, inline=True, fmt=fmt, fontsize=8)
plt.tight_layout()
plt.show()
This plot encapsulates everything we have learned so far, showing the colorized HST image (left), the H-alpha flux from MaNGA (middle), and combining them both into a single image (right).
Creating an H-alpha Emission Map#
We can isolate the last panel and plot it by itself, too.
plt.figure(figsize=(10, 10))
ax = plt.subplot(projection=hst_wcs)
ax.set_xlim(1950, 2550)
ax.set_ylim(2350, 2900)
plt.xlabel(r'Right Ascension')
plt.ylabel(r'Declination')
plt.title(r'HST Image + H-$\alpha$ Emission from MaNGA')
# Plot the HST image
ax.imshow(hst_image)
# Plot MaNGA contours
contour_levels = [1, 10, 20, 50, 100]
contour_labels = [str(c) for c in contour_levels]
contour_labels[0] = r'1 $\times10^{-17}$ erg/s/cm$^{2}$/spaxel'
fmt = {}
for label_level, label_string in zip(contour_levels, contour_labels):
fmt[label_level] = label_string
contours = ax.contour(h_alpha_flux,
transform=ax.get_transform(manga_wcs),
levels=contour_levels, colors='white')
ax.clabel(contours, contours.levels, inline=True, fmt=fmt, fontsize=14)
plt.savefig('manga_halpha_map.png')
plt.show()
In this figure, we can see that the H-alpha flux from MaNGA follows the spiral arms of the top galaxy, and the emission is strongest near the center of both galaxies.
Plotting the stellar velocity field#
Last but not least, let’s do the same thing with the stellar velocity! The stellar velocity field from MaNGA will show which parts of the galaxies are redshifted (moving away from us, which we will plot in red), and which parts are blueshifted (moving toward us, which we will plot in blue).
plt.figure(figsize=(14, 10))
ax = plt.subplot(projection=WCS(f435w[1].header))
ax.imshow(f435w[1].data, vmin=0, vmax=0.5, cmap='Greys_r',
transform=ax.get_transform(WCS(f435w[1].header)))
ax.set_xlim(1950, 2550)
ax.set_ylim(2350, 2900)
bin_indx = manga_map['BINID'].data[1]
unique_bins, unique_indices = tuple(map(lambda x: x[1:],
np.unique(bin_indx.ravel(), return_index=True)))
x_pix = np.array([x for y in range(74) for x in range(74)])[unique_indices]
y_pix = np.array([y for y in range(74) for x in range(74)])[unique_indices]
v_map = velocity_map.ravel()[unique_indices]
# Get the luminosity-weighted x and y coordinates of the unique bins
im = ax.scatter(x_pix, y_pix, c=v_map,
marker='.', s=100, lw=0,
vmin=-150, vmax=150, cmap='seismic',
transform=ax.get_transform(manga_wcs))
plt.colorbar(im, label='Stellar Velocity [km/s]')
plt.xlabel(r'Right Ascension')
plt.ylabel(r'Declination')
plt.title(r'Stellar Velocity from MaNGA')
plt.savefig('manga_velocity_map.png')
plt.show()
This plot shows that this galaxy pair is rotating vertically (from the perspective of this image). The arm in the upper galaxy is blueshifted, while most of the lower galaxy, and the end of the arm is redshifted.
Congratulations! You have reached the end of this tutorial notebook. You have learned how to access and download MaNGA data from MAST, and combine it with HST images to map different properties for this merging pair of galaxies.
Additional Resources#
Additional resources are linked below:
Citations#
If you use MaNGA data for published research, see the following links for information on which citations to include in your paper:
About this Notebook#
For questions or issues with this notebook, you can open a github issue or email archive@stsci.edu.
Authors: Julie Imig, Brian Cherinka
Keywords: Tutorial, SDSS, MaNGA, HST, galaxies
First published: October 2024
Last updated: October 2024