Sky Matching for HST Mosaics #
Learning Goals:#
In this tutorial we explore different options for handling the background sky with AstroDrizzle
.
By the end of this notebook you will:
• Download data with astroquery
• Align data with TweakReg
• Compare background sky options using the AstroDrizzle
parameter skymethod
Table of Contents#
Introduction
1. Download the Observations with astroquery
1.1 Check image header data
1.2 Inspect the alignment
2. Align the visit-level drizzled data with TweakReg
2.1 Create a catalog of Gaia DR3 sources
2.2 Create a catalog of Gaia DR3 sources with Proper Motion Data
2.3 Run Tweakreg
2.4 Inspect the shift file and fit quality
2.5 Overplot matched sources and inspect fit residuals
2.6 Rerun TweakReg
and update the header WCS
2.7 Run TweakBack
to propogate the WCS to the FLT files
3. Compare skymethod
options in AstroDrizzle
3.1 skymethod = 'localmin'
3.2 skymethod = 'match'
3.3 skymethod = 'globalmin+match'
3.4 skymethod = 'globalmin'
4. Compare the MDRIZSKY values for each method
5. Display the ‘sky matched’ science mosaic and weight image
6. Conclusion
Additional Resources
About this notebook
Citations
Introduction #
When creating an image mosaic, AstroDrizzle
has the ability to compute the sky and then either subtract or equalize the background in input images. Users may select the algorithm used for the sky subtraction via the skymethod
parameter.
There are four methods available in sky matching: localmin
, match
, globalmin
, and globalmin+match
.
By applying drizzlepac.sky.sky()
, or using the skymethod
parameter in the call to drizzlepac.astrodrizzle.AstroDrizzle()
, AstroDrizzle will update the keyword MDRIZSKY
in the headers of the input files but it will not change the science data.
For images of sparse fields with few astronomical sources, the default skymethod = 'localmin'
may be used, although this method can slightly oversubtract the background. For images with complicated backgrounds, such as nebulae and large host galaxies, skymethod = 'match'
is recommended.
For more information on the specifics of this function, please refer to the documentation here
Below, each of the four methods is demonstrated using a single example dataset, and differences between the methods is highlighted.
# All imports needed through out this notebook are included at the beginning.
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
from collections import defaultdict
from IPython.display import clear_output
import glob
import os
import shutil
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import pandas
from astropy.coordinates import SkyCoord
from astropy.io import ascii, fits
from astropy.table import Table
from astropy.units import Quantity
import astropy.units as u
from astroquery.gaia import Gaia
from astroquery.mast import Observations
from drizzlepac import astrodrizzle, tweakback, tweakreg
from drizzlepac.haputils.astrometric_utils import create_astrometric_catalog
Gaia.MAIN_GAIA_TABLE = 'gaiadr3.gaia_source' # Change if different data release is desired
Gaia.ROW_LIMIT = 100000
The following task in the stsci.skypac package can be run with TEAL:
skymatch
The following tasks in the drizzlepac package can be run with TEAL:
astrodrizzle config_testbed imagefindpars mapreg
photeq pixreplace pixtopix pixtosky
refimagefindpars resetbits runastrodriz skytopix
tweakback tweakreg updatenpol
1. Download the Observations with astroquery
#
MAST queries may be done using query_criteria
, where we specify:
–> obs_id, proposal_id, and filters
MAST data products may be downloaded by using download_products
, where we specify:
–> products = calibrated (FLT, FLC) or drizzled (DRZ, DRC) files
–> type = standard products (CALxxx) or advanced products (HAP-SVM)
WFC3/IR observations of the Horsehead Nebula in the F160W filter obtained in HST proposal program 12812 will be used for this demonstration.
Nine visits were acquired in a 3x3 mosaic pattern on the sky, with two dither positions per visit in two IR filters. High level science products for these datasets were delivered to MAST in 2013, and this notebook is based on that user tutorial but has been updated to align these data to Gaia.
The 18 FLT images ibxl5*_flt.fits have been processed by the HST WFC3 pipeline (calwf3), which includes bias subtraction, dark current correction, cosmic-ray rejection, and flatfielding. The 9 DRZ files ibxl5*_drz.fits have been processed with AstroDrizzle
to remove distortion and to combine the 2 dithered FLT frames by filter for each vist.
obs_ids = ['ibxl5*']
props = ['12812']
filts = ['F160W']
obsTable = Observations.query_criteria(obs_id=obs_ids, proposal_id=props, filters=filts)
products = Observations.get_product_list(obsTable)
data_prod = ['FLT', 'DRZ'] # ['FLC','FLT','DRC','DRZ']
data_type = ['CALWF3'] # ['CALACS','CALWF3','CALWP2','HAP-SVM']
Observations.download_products(products, download_dir='./science',
productSubGroupDescription=data_prod,
project=data_type)
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl50030_drz.fits to ./science/mastDownload/HST/ibxl50030/ibxl50030_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl50clq_flt.fits to ./science/mastDownload/HST/ibxl50clq/ibxl50clq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl50cqq_flt.fits to ./science/mastDownload/HST/ibxl50cqq/ibxl50cqq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl51030_drz.fits to ./science/mastDownload/HST/ibxl51030/ibxl51030_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl51eoq_flt.fits to ./science/mastDownload/HST/ibxl51eoq/ibxl51eoq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl51etq_flt.fits to ./science/mastDownload/HST/ibxl51etq/ibxl51etq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl52030_drz.fits to ./science/mastDownload/HST/ibxl52030/ibxl52030_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl52k0q_flt.fits to ./science/mastDownload/HST/ibxl52k0q/ibxl52k0q_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl52k5q_flt.fits to ./science/mastDownload/HST/ibxl52k5q/ibxl52k5q_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl53030_drz.fits to ./science/mastDownload/HST/ibxl53030/ibxl53030_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl53kxq_flt.fits to ./science/mastDownload/HST/ibxl53kxq/ibxl53kxq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl53l9q_flt.fits to ./science/mastDownload/HST/ibxl53l9q/ibxl53l9q_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl54030_drz.fits to ./science/mastDownload/HST/ibxl54030/ibxl54030_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl54bgq_flt.fits to ./science/mastDownload/HST/ibxl54bgq/ibxl54bgq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl54blq_flt.fits to ./science/mastDownload/HST/ibxl54blq/ibxl54blq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl55030_drz.fits to ./science/mastDownload/HST/ibxl55030/ibxl55030_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl55f0q_flt.fits to ./science/mastDownload/HST/ibxl55f0q/ibxl55f0q_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl55f5q_flt.fits to ./science/mastDownload/HST/ibxl55f5q/ibxl55f5q_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl56030_drz.fits to ./science/mastDownload/HST/ibxl56030/ibxl56030_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl56huq_flt.fits to ./science/mastDownload/HST/ibxl56huq/ibxl56huq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl56i2q_flt.fits to ./science/mastDownload/HST/ibxl56i2q/ibxl56i2q_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl57030_drz.fits to ./science/mastDownload/HST/ibxl57030/ibxl57030_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl57adq_flt.fits to ./science/mastDownload/HST/ibxl57adq/ibxl57adq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl57aiq_flt.fits to ./science/mastDownload/HST/ibxl57aiq/ibxl57aiq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl58030_drz.fits to ./science/mastDownload/HST/ibxl58030/ibxl58030_drz.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl58sqq_flt.fits to ./science/mastDownload/HST/ibxl58sqq/ibxl58sqq_flt.fits ...
[Done]
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/ibxl58svq_flt.fits to ./science/mastDownload/HST/ibxl58svq/ibxl58svq_flt.fits ...
[Done]
Local Path | Status | Message | URL |
---|---|---|---|
str55 | str8 | object | object |
./science/mastDownload/HST/ibxl50030/ibxl50030_drz.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl50clq/ibxl50clq_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl50cqq/ibxl50cqq_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl51030/ibxl51030_drz.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl51eoq/ibxl51eoq_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl51etq/ibxl51etq_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl52030/ibxl52030_drz.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl52k0q/ibxl52k0q_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl52k5q/ibxl52k5q_flt.fits | COMPLETE | None | None |
... | ... | ... | ... |
./science/mastDownload/HST/ibxl55f5q/ibxl55f5q_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl56030/ibxl56030_drz.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl56huq/ibxl56huq_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl56i2q/ibxl56i2q_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl57030/ibxl57030_drz.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl57adq/ibxl57adq_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl57aiq/ibxl57aiq_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl58030/ibxl58030_drz.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl58sqq/ibxl58sqq_flt.fits | COMPLETE | None | None |
./science/mastDownload/HST/ibxl58svq/ibxl58svq_flt.fits | COMPLETE | None | None |
Move the files to the local working directory
files = glob.glob(os.path.join(os.curdir, 'science', 'mastDownload', 'HST', '*', '*fits'))
for im in files:
root = os.path.basename(im)
os.rename(im, './' + root)
if os.path.exists('./science'):
shutil.rmtree('science/')
1.1 Check image header data #
Here we will look at important keywords in the image headers.
files = sorted(glob.glob('*fl?.fits'))
keywords_ext0 = ["ROOTNAME", "ASN_ID", "TARGNAME", "DETECTOR", "FILTER", "EXPTIME",
"RA_TARG", "DEC_TARG", "POSTARG1", "POSTARG2", "DATE-OBS"]
keywords_ext1 = ["ORIENTAT"]
data = []
for file in files:
path_data = []
for keyword in keywords_ext0:
path_data.append(fits.getval(file, keyword, ext=0))
for keyword in keywords_ext1:
path_data.append(fits.getval(file, keyword, ext=1))
data.append(path_data)
keywords = keywords_ext0 + keywords_ext1
table = Table(np.array(data), names=keywords, dtype=['str', 'str', 'str', 'str', 'str', 'f8', 'f8', 'f8', 'f8', 'f8', 'str', 'f8'])
table['EXPTIME'].format = '7.1f'
table['RA_TARG'].format = table['DEC_TARG'].format = '7.4f'
table['POSTARG1'].format = table['POSTARG2'].format = '7.3f'
table['ORIENTAT'].format = '7.2f'
table.show_in_notebook()
idx | ROOTNAME | ASN_ID | TARGNAME | DETECTOR | FILTER | EXPTIME | RA_TARG | DEC_TARG | POSTARG1 | POSTARG2 | DATE-OBS | ORIENTAT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | ibxl50clq | IBXL50030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | -123.742 | -113.112 | 2012-11-03 | 170.64 |
1 | ibxl50cqq | IBXL50030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | -123.742 | -105.912 | 2012-11-03 | 170.64 |
2 | ibxl51eoq | IBXL51030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 0.000 | -113.112 | 2012-10-22 | 166.65 |
3 | ibxl51etq | IBXL51030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 0.000 | -105.912 | 2012-10-22 | 166.65 |
4 | ibxl52k0q | IBXL52030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 123.742 | -113.112 | 2012-10-23 | 166.65 |
5 | ibxl52k5q | IBXL52030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 123.742 | -105.912 | 2012-10-23 | 166.66 |
6 | ibxl53kxq | IBXL53030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | -123.742 | -3.600 | 2012-10-23 | 165.65 |
7 | ibxl53l9q | IBXL53030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | -123.742 | 3.600 | 2012-10-24 | 165.65 |
8 | ibxl54bgq | IBXL54030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 0.000 | -3.600 | 2012-10-26 | 166.63 |
9 | ibxl54blq | IBXL54030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 0.000 | 3.600 | 2012-10-26 | 166.62 |
10 | ibxl55f0q | IBXL55030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 123.742 | -3.600 | 2012-10-27 | 166.64 |
11 | ibxl55f5q | IBXL55030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 123.742 | 3.600 | 2012-10-27 | 166.64 |
12 | ibxl56huq | IBXL56030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | -123.742 | 105.912 | 2012-10-27 | 162.65 |
13 | ibxl56i2q | IBXL56030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | -123.742 | 113.112 | 2012-10-28 | 162.64 |
14 | ibxl57adq | IBXL57030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 0.000 | 105.912 | 2012-11-05 | 166.64 |
15 | ibxl57aiq | IBXL57030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 0.000 | 113.112 | 2012-11-05 | 166.64 |
16 | ibxl58sqq | IBXL58030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 123.742 | 105.912 | 2012-11-07 | 166.65 |
17 | ibxl58svq | IBXL58030 | HORSEHEAD-COPY | IR | F160W | 702.9 | 85.2545 | -2.4530 | 123.742 | 113.112 | 2012-11-07 | 166.65 |
1.2 Inspect the Alignment #
Check the active WCS solution in the image header. If the image is aligned to a catalog, list the number of matches and the fit RMS in mas.
Convert the fit RMS values to pixels for comparison with the alignment results performed later in this notebook.
ext_0_kws = ['DETECTOR']
ext_1_kws = ['WCSNAME', 'NMATCHES', 'RMS_RA', 'RMS_DEC']
det_scale = {'IR': 0.1283, 'UVIS': 0.0396, 'WFC': 0.05} # plate scale (arcsec/pixel)
format_dict = {}
col_dict = defaultdict(list)
for f in sorted(glob.glob('*dr?.fits')):
col_dict['FILENAME'].append(f)
hdr0 = fits.getheader(f, 0)
hdr1 = fits.getheader(f, 1)
for kw in ext_0_kws: # extension 0 keywords
col_dict[kw].append(hdr0[kw])
for kw in ext_1_kws: # extension 1 keywords
if 'RMS' in kw:
val = np.around(hdr1[kw], 1)
else:
val = hdr1[kw]
col_dict[kw].append(val)
for kw in ['RMS_RA', 'RMS_DEC']:
val = np.round(hdr1[kw]/1000./det_scale[hdr0['DETECTOR']], 2) # convert RMS from mas to pixels
col_dict[f'{kw}_pix'].append(val)
wcstable = Table(col_dict)
wcstable.show_in_notebook()
idx | FILENAME | DETECTOR | WCSNAME | NMATCHES | RMS_RA | RMS_DEC | RMS_RA_pix | RMS_DEC_pix |
---|---|---|---|---|---|---|---|---|
0 | ibxl50030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 8 | 5.4 | 10.4 | 0.04 | 0.08 |
1 | ibxl51030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 11 | 13.5 | 8.2 | 0.11 | 0.06 |
2 | ibxl52030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 8 | 23.5 | 19.3 | 0.18 | 0.15 |
3 | ibxl53030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GSC242 | 14 | 64.7 | 87.6 | 0.5 | 0.68 |
4 | ibxl54030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 7 | 26.0 | 23.9 | 0.2 | 0.19 |
5 | ibxl55030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 10 | 9.8 | 7.9 | 0.08 | 0.06 |
6 | ibxl56030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GSC242 | 18 | 65.4 | 93.3 | 0.51 | 0.73 |
7 | ibxl57030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 12 | 8.4 | 8.2 | 0.07 | 0.06 |
8 | ibxl58030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 15 | 35.5 | 36.7 | 0.28 | 0.29 |
2. Align the visit-level drizzled data with TweakReg
#
Here we will use TweakReg
to align the DRZ files to Gaia DR3 and then use TweakBack
to propagate those solutions back to the FLT image headers prior to combining with AstroDrizzle
.
2.1 Create a catalog of Gaia DR3 sources #
This method uses the RA/Dec of the first image and a radius of 5’.
RA = table['RA_TARG'][0]
Dec = table['DEC_TARG'][0]
coord = SkyCoord(ra=RA, dec=Dec, unit=(u.deg, u.deg))
radius = Quantity(5., u.arcmin)
gaia_query = Gaia.query_object_async(coordinate=coord, radius=radius)
gaia_query
INFO: Query finished. [astroquery.utils.tap.core]
solution_id | DESIGNATION | SOURCE_ID | random_index | ref_epoch | ra | ra_error | dec | dec_error | parallax | parallax_error | parallax_over_error | pm | pmra | pmra_error | pmdec | pmdec_error | ra_dec_corr | ra_parallax_corr | ra_pmra_corr | ra_pmdec_corr | dec_parallax_corr | dec_pmra_corr | dec_pmdec_corr | parallax_pmra_corr | parallax_pmdec_corr | pmra_pmdec_corr | astrometric_n_obs_al | astrometric_n_obs_ac | astrometric_n_good_obs_al | astrometric_n_bad_obs_al | astrometric_gof_al | astrometric_chi2_al | astrometric_excess_noise | astrometric_excess_noise_sig | astrometric_params_solved | astrometric_primary_flag | nu_eff_used_in_astrometry | pseudocolour | pseudocolour_error | ra_pseudocolour_corr | dec_pseudocolour_corr | parallax_pseudocolour_corr | pmra_pseudocolour_corr | pmdec_pseudocolour_corr | astrometric_matched_transits | visibility_periods_used | astrometric_sigma5d_max | matched_transits | new_matched_transits | matched_transits_removed | ipd_gof_harmonic_amplitude | ipd_gof_harmonic_phase | ipd_frac_multi_peak | ipd_frac_odd_win | ruwe | scan_direction_strength_k1 | scan_direction_strength_k2 | scan_direction_strength_k3 | scan_direction_strength_k4 | scan_direction_mean_k1 | scan_direction_mean_k2 | scan_direction_mean_k3 | scan_direction_mean_k4 | duplicated_source | phot_g_n_obs | phot_g_mean_flux | phot_g_mean_flux_error | phot_g_mean_flux_over_error | phot_g_mean_mag | phot_bp_n_obs | phot_bp_mean_flux | phot_bp_mean_flux_error | phot_bp_mean_flux_over_error | phot_bp_mean_mag | phot_rp_n_obs | phot_rp_mean_flux | phot_rp_mean_flux_error | phot_rp_mean_flux_over_error | phot_rp_mean_mag | phot_bp_rp_excess_factor | phot_bp_n_contaminated_transits | phot_bp_n_blended_transits | phot_rp_n_contaminated_transits | phot_rp_n_blended_transits | phot_proc_mode | bp_rp | bp_g | g_rp | radial_velocity | radial_velocity_error | rv_method_used | rv_nb_transits | rv_nb_deblended_transits | rv_visibility_periods_used | rv_expected_sig_to_noise | rv_renormalised_gof | rv_chisq_pvalue | rv_time_duration | rv_amplitude_robust | rv_template_teff | rv_template_logg | rv_template_fe_h | rv_atm_param_origin | vbroad | vbroad_error | vbroad_nb_transits | grvs_mag | grvs_mag_error | grvs_mag_nb_transits | rvs_spec_sig_to_noise | phot_variable_flag | l | b | ecl_lon | ecl_lat | in_qso_candidates | in_galaxy_candidates | non_single_star | has_xp_continuous | has_xp_sampled | has_rvs | has_epoch_photometry | has_epoch_rv | has_mcmc_gspphot | has_mcmc_msc | in_andromeda_survey | classprob_dsc_combmod_quasar | classprob_dsc_combmod_galaxy | classprob_dsc_combmod_star | teff_gspphot | teff_gspphot_lower | teff_gspphot_upper | logg_gspphot | logg_gspphot_lower | logg_gspphot_upper | mh_gspphot | mh_gspphot_lower | mh_gspphot_upper | distance_gspphot | distance_gspphot_lower | distance_gspphot_upper | azero_gspphot | azero_gspphot_lower | azero_gspphot_upper | ag_gspphot | ag_gspphot_lower | ag_gspphot_upper | ebpminrp_gspphot | ebpminrp_gspphot_lower | ebpminrp_gspphot_upper | libname_gspphot | dist |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
yr | deg | mas | deg | mas | mas | mas | mas / yr | mas / yr | mas / yr | mas / yr | mas / yr | mas | 1 / um | 1 / um | 1 / um | mas | deg | deg | deg | deg | deg | electron / s | electron / s | mag | electron / s | electron / s | mag | electron / s | electron / s | mag | mag | mag | mag | km / s | km / s | d | km / s | K | log(cm.s**-2) | dex | km / s | km / s | mag | mag | deg | deg | deg | deg | K | K | K | log(cm.s**-2) | log(cm.s**-2) | log(cm.s**-2) | dex | dex | dex | pc | pc | pc | mag | mag | mag | mag | mag | mag | mag | mag | mag | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
int64 | object | int64 | int64 | float64 | float64 | float32 | float64 | float32 | float64 | float32 | float32 | float32 | float64 | float32 | float64 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | int16 | int16 | int16 | int16 | float32 | float32 | float32 | float32 | int16 | bool | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | int16 | int16 | float32 | int16 | int16 | int16 | float32 | float32 | int16 | int16 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | bool | int16 | float64 | float32 | float32 | float32 | int16 | float64 | float32 | float32 | float32 | int16 | float64 | float32 | float32 | float32 | float32 | int16 | int16 | int16 | int16 | int16 | float32 | float32 | float32 | float32 | float32 | int16 | int16 | int16 | int16 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | int16 | float32 | float32 | int16 | float32 | float32 | int16 | float32 | object | float64 | float64 | float64 | float64 | bool | bool | int16 | bool | bool | bool | bool | bool | bool | bool | bool | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | float32 | object | float64 |
1636148068921376768 | Gaia DR3 3216469053418858496 | 3216469053418858496 | 368024805 | 2016.0 | 85.25078206874738 | 0.34748474 | -2.444257621037541 | 0.31849745 | 0.9495336814954154 | 0.41641867 | 2.2802382 | 7.7956214 | -0.8302380599609497 | 0.43142426 | 7.751285021389771 | 0.36127582 | -0.072362915 | 0.0020754219 | -0.35186028 | 0.1278402 | -0.26970458 | 0.15042841 | -0.6164755 | 0.10007274 | 0.19517034 | -0.149899 | 357 | 0 | 357 | 0 | 1.8443948 | 436.133 | 1.3849133 | 2.208717 | 95 | False | -- | 1.233876 | 0.08958775 | -0.17215662 | -0.06320628 | -0.05079003 | -0.1254937 | 0.08907318 | 41 | 21 | 0.63760585 | 42 | 26 | 0 | 0.015478957 | 5.244358 | 0 | 0 | 1.0694424 | 0.20129156 | 0.24663325 | 0.2671826 | 0.5048746 | -80.303276 | -2.1296542 | -22.792238 | -43.76734 | False | 354 | 218.89926651301704 | 0.7818137 | 279.98904 | 19.836756 | 28 | 44.18486946908339 | 5.24969 | 8.416662 | 21.225359 | 36 | 308.8952727851156 | 11.356452 | 27.19998 | 18.523367 | 1.61298 | 0 | 2 | 0 | 3 | 0 | 2.701992 | 1.3886032 | 1.3133888 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.94547931488657 | -16.76434187915805 | 84.72852258013162 | -25.79667536635267 | False | False | 0 | False | False | False | False | False | False | False | False | 1.7621454e-13 | 5.111382e-13 | 0.99999774 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.009486679186673242 | |
1636148068921376768 | Gaia DR3 3216469057714526080 | 3216469057714526080 | 160562994 | 2016.0 | 85.24865858921503 | 0.0807162 | -2.441354584616136 | 0.07413533 | 0.24702429233455972 | 0.09551564 | 2.5862184 | 1.38756 | 0.7312738742365584 | 0.09950856 | 1.1792206068277042 | 0.08531875 | -0.09268238 | -0.016587587 | -0.35330772 | 0.15432145 | -0.25057435 | 0.17109188 | -0.649208 | 0.11624458 | 0.24781711 | -0.1273712 | 389 | 0 | 387 | 2 | -1.0886481 | 412.40457 | 0.0 | 0.0 | 95 | False | -- | 1.2642988 | 0.020441843 | -0.14009616 | -0.07836674 | 0.0031425122 | -0.10781701 | 0.09727073 | 45 | 21 | 0.1476955 | 46 | 29 | 0 | 0.021776078 | 2.3582678 | 0 | 0 | 0.9599596 | 0.19218576 | 0.2656598 | 0.22300626 | 0.48614076 | -98.501114 | -2.7790413 | -25.351597 | -43.091904 | False | 385 | 1533.7964710362219 | 1.6690606 | 918.95795 | 17.722948 | 45 | 414.8798543565718 | 7.5229797 | 55.148342 | 18.793736 | 44 | 1747.7167079736257 | 11.556245 | 151.23569 | 16.641718 | 1.4099631 | 0 | 1 | 0 | 1 | 0 | 2.1520176 | 1.0707874 | 1.0812302 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.94176557869633 | -16.764874991852714 | 84.72628577778967 | -25.793696653062412 | False | False | 0 | False | False | False | False | False | True | True | False | 1.2362927e-13 | 6.260371e-13 | 0.9999927 | 6097.917 | 5930.6045 | 6142.094 | 4.5226 | 4.5009 | 4.5768 | -3.9361 | -4.0965 | -3.6061 | 919.4193 | 833.37 | 948.0848 | 3.6223 | 3.5315 | 3.6515 | 2.7407 | 2.6619 | 2.7644 | 1.5455 | 1.5014 | 1.5587 | MARCS | 0.013011650487557274 |
1636148068921376768 | Gaia DR3 3216467855123686016 | 3216467855123686016 | 668710222 | 2016.0 | 85.25474417063919 | 0.07255654 | -2.470084090608095 | 0.06763807 | 1.705994308777196 | 0.09274939 | 18.39359 | 13.672125 | -3.181681654139363 | 0.08841129 | -13.296762516546895 | 0.07709159 | -0.12809613 | 0.08502215 | -0.3073343 | 0.19231312 | -0.37712017 | 0.17119895 | -0.66374385 | 0.03020479 | 0.40648898 | -0.117953785 | 376 | 0 | 376 | 0 | 4.4143248 | 528.08984 | 0.39314708 | 4.8827662 | 31 | False | 1.3003229 | -- | -- | -- | -- | -- | -- | -- | 43 | 21 | 0.13255168 | 45 | 26 | 0 | 0.027088897 | 14.045337 | 0 | 2 | 1.1654105 | 0.22388098 | 0.3077812 | 0.25345388 | 0.42603984 | -72.65342 | -1.7500962 | -25.84865 | -41.594986 | False | 368 | 2476.027650243042 | 4.3828444 | 564.9362 | 17.202978 | 40 | 585.7780381608451 | 11.731945 | 49.930172 | 18.41921 | 36 | 2981.23630414607 | 24.774414 | 120.33529 | 16.061905 | 1.4406197 | 0 | 4 | 0 | 3 | 0 | 2.3573055 | 1.2162323 | 1.1410732 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.9712942044114 | -16.772811629675818 | 84.73186766212942 | -25.822629314586116 | False | False | 0 | True | False | False | False | False | False | True | False | 1.1540595e-13 | 1.3798553e-09 | 0.9999877 | 5968.2295 | 5923.5728 | 5995.96 | 4.6275 | 4.589 | 4.6636 | -4.0538 | -4.1164 | -3.7235 | 542.7187 | 531.214 | 555.837 | 4.0502 | 4.0231 | 4.069 | 3.0096 | 2.9875 | 3.0238 | 1.7022 | 1.6897 | 1.7104 | MARCS | 0.017083879996516314 |
1636148068921376768 | Gaia DR3 3216469019060675328 | 3216469019060675328 | 755626735 | 2016.0 | 85.26833524857398 | 0.45910412 | -2.4416029853336667 | 0.40957135 | -1.0905664099598757 | 0.530555 | -2.0555198 | 1.1219171 | 0.8643062489270098 | 0.5828771 | 0.715313093573643 | 0.47160438 | -0.054446124 | -0.015339496 | -0.33468443 | 0.13777287 | -0.2609537 | 0.1763433 | -0.5611049 | 0.031097142 | 0.2177652 | -0.11443702 | 330 | 0 | 329 | 1 | 1.0299137 | 382.76816 | 0.68933684 | 0.29942906 | 95 | False | -- | 1.2502365 | 0.123004876 | -0.19324453 | -0.12574936 | 0.032932058 | -0.14361922 | 0.064552374 | 39 | 19 | 0.84676933 | 41 | 25 | 0 | 0.06055019 | 12.78158 | 0 | 0 | 1.0397482 | 0.20912738 | 0.2604514 | 0.24491833 | 0.5289087 | -85.225365 | -3.2899575 | -29.32366 | -42.54999 | False | 328 | 147.74586838835364 | 0.72871625 | 202.74814 | 20.263578 | 29 | 36.02716968454987 | 3.8942373 | 9.251406 | 21.446966 | 37 | 190.87637950900836 | 7.5462556 | 25.294184 | 19.046015 | 1.5357692 | 0 | 0 | 0 | 0 | 0 | 2.4009514 | 1.1833878 | 1.2175636 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.9515174309682 | -16.74757367009055 | 84.74809544110592 | -25.794662806626693 | False | False | 0 | False | False | False | False | False | False | False | False | 7.747473e-13 | 5.229698e-13 | 0.99999446 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.017945489552972947 | |
1636148068921376768 | Gaia DR3 3216468611037930624 | 3216468611037930624 | 935473409 | 2016.0 | 85.2386085747217 | 0.46767473 | -2.462292300986681 | 0.4031481 | 0.7770076972461502 | 0.59839076 | 1.2984954 | 5.413292 | 0.5531465058042339 | 0.6129275 | -5.384956673257242 | 0.49430868 | 0.014938566 | 0.06448122 | -0.21245089 | 0.0711942 | -0.2614386 | 0.1208418 | -0.5615382 | -0.026767768 | 0.38506997 | -0.09344254 | 342 | 0 | 342 | 0 | 0.9642493 | 406.29196 | 1.4710811 | 1.2780555 | 95 | False | -- | 1.1623133 | 0.12403801 | -0.19795567 | -0.079425685 | 0.06298836 | -0.106788404 | 0.1012403 | 39 | 17 | 0.8698572 | 40 | 24 | 0 | 0.036293596 | 90.33434 | 0 | 0 | 1.0364223 | 0.1608992 | 0.30992013 | 0.18475303 | 0.44911218 | -82.79225 | -4.6845818 | -28.746756 | -41.727596 | False | 341 | 137.96486675397304 | 0.78542095 | 175.65723 | 20.337946 | 21 | 59.02707720646006 | 6.8534393 | 8.612767 | 20.910913 | 33 | 211.43949067561897 | 9.650035 | 21.91075 | 18.93493 | 1.9604018 | 0 | 1 | 0 | 1 | 0 | 1.9759827 | 0.5729675 | 1.4030151 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.95627609646655 | -16.78348111875944 | 84.71428834509156 | -25.814252456150466 | False | False | 0 | False | False | False | False | False | False | False | False | 1.2971835e-13 | 8.269208e-13 | 0.9999991 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.01836293659726027 | |
1636148068921376768 | Gaia DR3 3216468675465488256 | 3216468675465488256 | 16647219 | 2016.0 | 85.23467309871081 | 0.51438564 | -2.4498085573057633 | 0.43504587 | 0.33731643747067025 | 0.63177866 | 0.5339156 | 2.3331635 | 2.3330716928916786 | 0.65796125 | 0.02069617827588948 | 0.5042113 | -0.011451531 | -0.19442908 | -0.41642103 | 0.03437781 | -0.38334745 | 0.10441229 | -0.6943009 | 0.1926607 | 0.4085249 | -0.12117048 | 334 | 0 | 333 | 1 | 0.65179557 | 368.28964 | 1.3423299 | 1.2644218 | 95 | False | -- | 1.3347516 | 0.11629938 | -0.2020829 | -0.07508502 | -0.014079772 | -0.13441803 | 0.09302474 | 38 | 17 | 0.95642906 | 39 | 25 | 0 | 0.0040856865 | 64.82368 | 0 | 0 | 1.0245674 | 0.20001507 | 0.36711606 | 0.26003 | 0.40765452 | -98.68751 | 4.1797576 | -20.715187 | -39.459377 | False | 327 | 151.8625314562344 | 0.66563815 | 228.14578 | 20.23374 | 21 | 36.17745844357809 | 5.4620037 | 6.6234775 | 21.442448 | 29 | 204.66180430023923 | 8.290443 | 24.686472 | 18.970303 | 1.5859032 | 0 | 0 | 0 | 0 | 0 | 2.472145 | 1.2087078 | 1.2634373 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.94281943924076 | -16.781174971492643 | 84.71043259626695 | -25.801632853854667 | False | False | 0 | False | False | False | False | False | False | False | False | 4.767196e-13 | 5.8040146e-11 | 0.99999815 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.020028009828231417 | |
1636148068921376768 | Gaia DR3 3216469023354785408 | 3216469023354785408 | 176691911 | 2016.0 | 85.27075582329469 | 0.1961405 | -2.441307234608435 | 0.17860357 | 0.6636681928453716 | 0.2341562 | 2.8342967 | 6.585025 | 6.575404865804311 | 0.24365711 | -0.35580991638604564 | 0.20158039 | -0.04231842 | 0.014788889 | -0.3154728 | 0.11617606 | -0.2603726 | 0.12642686 | -0.5700941 | 0.13072464 | 0.23919845 | -0.061890464 | 368 | 0 | 366 | 2 | 0.43652844 | 405.4187 | 0.072520114 | 0.015899755 | 95 | False | -- | 1.2586821 | 0.05131671 | -0.1420974 | -0.08405918 | -0.029754888 | -0.114538334 | 0.13519505 | 43 | 20 | 0.3494921 | 45 | 28 | 0 | 0.018798698 | 6.73902 | 0 | 0 | 1.0153817 | 0.21722564 | 0.24762863 | 0.26764935 | 0.5151869 | -74.446075 | -3.9929616 | -22.67545 | -43.95803 | False | 363 | 409.71337850914114 | 1.0203439 | 401.5444 | 19.156166 | 37 | 65.82193793586049 | 5.4644194 | 12.04555 | 20.792616 | 40 | 530.0466563553375 | 7.329029 | 72.32154 | 17.93711 | 1.4543548 | 0 | 1 | 0 | 1 | 0 | 2.855505 | 1.6364498 | 1.2190552 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.95241508079897 | -16.745293946283045 | 84.75079163706141 | -25.7944553638111 | False | False | 0 | False | False | False | False | False | False | False | False | 3.5761834e-13 | 5.110677e-13 | 0.999994 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.020043830041751424 | |
1636148068921376768 | Gaia DR3 3216467855122414464 | 3216467855122414464 | 923936172 | 2016.0 | 85.25578005166672 | 0.50923383 | -2.4765054474694934 | 0.45520246 | 0.7769168571521851 | 0.5960472 | 1.3034484 | 0.9249258 | 0.8018697645542915 | 0.6797768 | 0.4609692420907058 | 0.5313265 | -0.11263442 | 0.11976503 | -0.22806385 | 0.19673494 | -0.18776836 | 0.22860377 | -0.61896616 | 0.19363396 | 0.23427469 | -0.13258351 | 285 | 0 | 282 | 3 | -0.40685338 | 300.89392 | 0.0 | 2.4194166e-15 | 95 | False | -- | 1.0979824 | 0.14102378 | -0.12671481 | -0.15378633 | -0.059823737 | -0.18096454 | 0.24567267 | 33 | 18 | 0.9812631 | 34 | 19 | 0 | 0.07628962 | 4.733895 | 0 | 0 | 0.98153275 | 0.21344621 | 0.29472753 | 0.19238599 | 0.43329495 | -87.93401 | -1.0898006 | -29.688093 | -42.996693 | False | 280 | 136.19056298917084 | 0.83884525 | 162.35481 | 20.352 | 23 | 45.240498301565275 | 8.204231 | 5.5142884 | 21.199724 | 31 | 151.9858001141609 | 8.52438 | 17.829544 | 19.293388 | 1.4481642 | 0 | 0 | 0 | 2 | 0 | 1.9063358 | 0.8477249 | 1.0586109 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.97773758997462 | -16.774872090351703 | 84.73275587575476 | -25.829084209901822 | False | False | 0 | False | False | False | False | False | False | False | False | 1.0344582e-09 | 1.8264745e-10 | 0.99999684 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.023539736369753695 | |
1636148068921376768 | Gaia DR3 3216468164360052992 | 3216468164360052992 | 23546710 | 2016.0 | 85.27451682697576 | 2.2556965 | -2.472305714228985 | 1.5849423 | -- | -- | -- | -- | -- | -- | -- | -- | 0.536678 | -- | -- | -- | -- | -- | -- | -- | -- | -- | 80 | 0 | 80 | 0 | 1.4301157 | 93.14176 | 0.0 | 0.0 | 3 | False | -- | -- | -- | -- | -- | -- | -- | -- | 10 | 7 | 4.1676683 | 10 | 6 | 0 | 0.09136518 | 171.88559 | 0 | 0 | -- | 0.3697472 | 0.50056857 | 0.41110742 | 0.52664024 | -76.56397 | -22.63934 | -33.053043 | -39.32441 | False | 79 | 78.44416585717141 | 1.3150449 | 59.651325 | 20.950966 | 4 | 66.57637510952588 | 25.076605 | 2.6549199 | 20.780241 | 5 | 135.564179093732 | 25.503525 | 5.3155074 | 19.417534 | 2.5768716 | 0 | 0 | 0 | 0 | 0 | 1.3627071 | -0.17072487 | 1.533432 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.98291592741373 | -16.75633924939091 | 84.75370889485112 | -25.82557011527804 | False | False | 0 | False | False | False | False | False | False | False | False | 2.4502437e-05 | 1.4911667e-05 | 0.99836755 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.02782140743048771 | |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1636148068921376768 | Gaia DR3 3216456065439222912 | 3216456065439222912 | 1421695677 | 2016.0 | 85.31116982575814 | 0.40173137 | -2.5106681948456453 | 0.4013123 | 1.736133118826882 | 0.45418435 | 3.8225296 | 9.741213 | -5.152917907458617 | 0.517365 | -8.266719879098039 | 0.443483 | -0.16442835 | -0.076135896 | -0.43010193 | 0.24256699 | 0.0072904215 | 0.35669935 | -0.7236328 | 0.12072589 | -0.0053872755 | -0.32701382 | 290 | 0 | 289 | 1 | 3.1741064 | 417.32562 | 1.6136845 | 3.0210483 | 95 | False | -- | 1.1419736 | 0.1037138 | -0.102503575 | -0.23006625 | -0.033000063 | -0.16398549 | 0.22349931 | 34 | 20 | 0.8391437 | 37 | 25 | 0 | 0.02747992 | 177.14145 | 1 | 0 | 1.1351129 | 0.1884894 | 0.27369884 | 0.21929786 | 0.48222566 | -80.36146 | -4.405813 | -22.027073 | -42.93724 | False | 287 | 234.3866961283912 | 0.9647052 | 242.96199 | 19.762535 | 24 | 75.9456305925942 | 9.633069 | 7.883846 | 20.637285 | 29 | 334.7660203080705 | 11.112565 | 30.125 | 18.436043 | 1.7522823 | 0 | 2 | 0 | 1 | 0 | 2.2012424 | 0.87475014 | 1.3264923 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 207.0361400496104 | -16.74167521407987 | 84.79282428995414 | -25.865235525984968 | False | False | 0 | False | False | False | False | False | False | False | False | 6.410813e-12 | 2.0735247e-09 | 0.9999794 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.080839193349907 | |
1636148068921376768 | Gaia DR3 3216472558112887808 | 3216472558112887808 | 796706940 | 2016.0 | 85.18852621317357 | 0.2259397 | -2.405656267543347 | 0.21768318 | -0.11388777731196244 | 0.28216147 | -0.40362626 | 1.2198783 | 1.184294234555146 | 0.26978385 | -0.29248995206570705 | 0.2340413 | -0.26953048 | 0.1911443 | -0.23510878 | 0.32237884 | -0.36343005 | 0.30793124 | -0.65272945 | 0.037301254 | 0.33524925 | -0.26868442 | 325 | 0 | 325 | 0 | -0.717088 | 325.74405 | 0.0 | 0.0 | 95 | False | -- | 1.2839941 | 0.056570467 | -0.19961677 | 0.015470109 | -0.18636444 | -0.09788927 | 0.019295616 | 38 | 20 | 0.43101293 | 38 | 23 | 0 | 0.030880287 | 8.535898 | 0 | 0 | 0.97071016 | 0.22002906 | 0.28557843 | 0.20794256 | 0.4101255 | -65.66478 | 0.8588567 | -24.406776 | -43.698612 | False | 320 | 364.00507922068095 | 0.90043736 | 404.25363 | 19.284597 | 34 | 137.15507118818775 | 11.79715 | 11.62612 | 19.995512 | 31 | 342.4081435440125 | 7.838386 | 43.683502 | 18.411535 | 1.3174629 | 0 | 1 | 0 | 1 | 0 | 1.5839767 | 0.7109146 | 0.87306213 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.87962201372886 | -16.801535222612248 | 84.66107447497244 | -25.75581047640869 | False | False | 0 | False | False | False | False | False | False | False | False | 2.1622872e-10 | 1.3842859e-10 | 0.99999607 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.08112646296289025 | |
1636148068921376768 | Gaia DR3 3216444937178204160 | 3216444937178204160 | 1386239099 | 2016.0 | 85.19030586577739 | 0.07698814 | -2.5028819323642013 | 0.06952155 | 0.49047638721509285 | 0.09691278 | 5.0610085 | 9.442557 | 7.014016212995759 | 0.09374031 | -6.321825218787011 | 0.079626285 | -0.054927044 | 0.02979098 | -0.2849793 | 0.09145997 | -0.34964725 | 0.09440442 | -0.62761176 | 0.066617794 | 0.35496876 | -0.08418727 | 381 | 0 | 381 | 0 | 2.634945 | 476.3032 | 0.30653253 | 2.2057276 | 95 | False | -- | 1.4101175 | 0.020281127 | -0.15829301 | -0.032261044 | -0.025952134 | -0.049249224 | 0.06220646 | 43 | 21 | 0.13505712 | 43 | 25 | 0 | 0.023879923 | 9.0169325 | 1 | 0 | 1.0968245 | 0.20904742 | 0.29357752 | 0.24537306 | 0.4592325 | -93.210556 | 0.81500864 | -25.391544 | -42.085728 | False | 373 | 1818.6555646912966 | 1.5091 | 1205.126 | 17.53799 | 38 | 663.8714987983407 | 11.664461 | 56.914032 | 18.283333 | 38 | 1679.6880569559742 | 12.2571 | 137.03796 | 16.684824 | 1.288622 | 0 | 2 | 0 | 0 | 0 | 1.5985088 | 0.74534225 | 0.8531666 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.97046839266432 | -16.845058105618648 | 84.65904656064926 | -25.85303525756708 | False | False | 0 | True | False | False | False | False | True | True | False | 2.1057866e-11 | 5.2152347e-13 | 0.9999929 | 4720.8716 | 4589.9756 | 4839.4907 | 4.6567 | 4.5776 | 4.7072 | -2.2392 | -2.4267 | -1.7745 | 862.0521 | 812.244 | 948.8539 | 1.0476 | 0.9054 | 1.2078 | 0.7958 | 0.685 | 0.9228 | 0.4362 | 0.3746 | 0.5038 | PHOENIX | 0.08121814053391099 |
1636148068921376768 | Gaia DR3 3216468782835372032 | 3216468782835372032 | 657511649 | 2016.0 | 85.17292618358479 | 0.19054802 | -2.4623957493034743 | 0.17272547 | 2.1624020293821835 | 0.23938343 | 9.0332155 | 2.4493213 | -2.037035196031785 | 0.2268017 | 1.3600228792903124 | 0.19178832 | -0.14530747 | 0.112551525 | -0.20920323 | 0.17061059 | -0.3053354 | 0.17149667 | -0.5708101 | 0.043384105 | 0.30095217 | -0.20159128 | 352 | 0 | 351 | 1 | -0.48073354 | 416.80234 | 0.59515935 | 1.1965727 | 95 | False | -- | 1.0901086 | 0.05042796 | -0.17146336 | -0.0065654744 | -0.110863455 | -0.030477438 | 0.0075620045 | 40 | 20 | 0.33940324 | 40 | 23 | 0 | 0.030575372 | 178.93437 | 0 | 0 | 0.9807946 | 0.16747355 | 0.28867003 | 0.17314363 | 0.43588594 | -74.866936 | 5.0166435 | -23.469093 | -43.28577 | False | 347 | 435.6715921697949 | 1.0631166 | 409.80606 | 19.089468 | 26 | 44.39955876616971 | 6.0446095 | 7.3453145 | 21.220095 | 38 | 673.5576808594151 | 8.575238 | 78.54682 | 17.676958 | 1.6479322 | 0 | 0 | 0 | 0 | 0 | 3.5431366 | 2.1306267 | 1.4125099 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.92457804544165 | -16.841666317801355 | 84.64143853749016 | -25.811932421839387 | False | False | 0 | False | False | False | False | False | False | False | False | 2.7495896e-13 | 5.0978774e-13 | 0.99999624 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.08200148643415694 | |
1636148068921376768 | Gaia DR3 3216455691775435392 | 3216455691775435392 | 1079684357 | 2016.0 | 85.30495708910514 | 1.4646537 | -2.5178904392586623 | 1.198452 | 1.0621429300659084 | 1.496934 | 0.70954555 | 14.06971 | 2.362959871277592 | 1.4997277 | -13.869864598271748 | 1.2972544 | 0.41949913 | 0.5497209 | -0.122153305 | -0.007439146 | 0.36512154 | 0.13959806 | -0.49781814 | 0.08308936 | -0.12201575 | 0.1388765 | 113 | 0 | 112 | 1 | -1.8722427 | 109.50301 | 0.0 | 0.0 | 95 | False | -- | 1.1160979 | 0.38008702 | 0.2803165 | 0.108602926 | 0.3289834 | 0.09997459 | 0.17758605 | 13 | 11 | 2.1380084 | 14 | 8 | 0 | 0.13895129 | 172.40553 | 0 | 0 | 0.87120515 | 0.36661693 | 0.3774008 | 0.22178955 | 0.376025 | -25.664597 | -18.63486 | -15.046993 | 42.01079 | False | 111 | 83.73466570505262 | 0.9941574 | 84.22677 | 20.880104 | 8 | 48.316372981047714 | 11.551536 | 4.1826797 | 21.128307 | 11 | 143.12426368829165 | 13.869087 | 10.31966 | 19.358612 | 2.286277 | 0 | 0 | 0 | 0 | 1 | 1.7696953 | 0.24820328 | 1.521492 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 207.03981962770035 | -16.750522211440767 | 84.7856405966112 | -25.872228605607752 | False | False | 0 | False | False | False | False | False | False | False | False | 1.2387219e-10 | 4.4580528e-08 | 0.99999696 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.08219069174617054 | |
1636148068921376768 | Gaia DR3 3216469847988496640 | 3216469847988496640 | 1750321072 | 2016.0 | 85.33205874915119 | 0.4250795 | -2.425249860759321 | 0.37327173 | 0.22421272188486763 | 0.48120424 | 0.46594086 | 1.1375393 | 0.6146611315465014 | 0.53041315 | -0.9571766658995218 | 0.43026003 | -0.08336612 | -0.04359924 | -0.3503951 | 0.17059404 | -0.22215058 | 0.20433807 | -0.63215035 | 0.105049506 | 0.21047379 | -0.11205828 | 395 | 0 | 393 | 2 | 3.2212033 | 549.23535 | 1.7964642 | 2.885576 | 95 | False | -- | 1.0470759 | 0.107746 | -0.16536176 | -0.1214191 | 0.04378124 | -0.12220128 | 0.12459754 | 46 | 21 | 0.7767407 | 50 | 31 | 0 | 0.016963525 | 142.54533 | 0 | 0 | 1.1170963 | 0.21057051 | 0.30917907 | 0.26333737 | 0.43816993 | -90.41127 | -5.9151006 | -22.575792 | -42.194275 | False | 384 | 176.802211701999 | 0.77002114 | 229.60695 | 20.068647 | 21 | 48.094409264223955 | 8.200751 | 5.8646345 | 21.133307 | 41 | 300.8747652262563 | 8.945304 | 33.63494 | 18.551931 | 1.9737829 | 0 | 1 | 0 | 2 | 0 | 2.5813751 | 1.0646591 | 1.516716 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.96721911695258 | -16.683584284834694 | 84.81941412521121 | -25.78062488637266 | False | False | 0 | False | False | False | False | False | False | False | False | 5.8075224e-13 | 6.0352385e-13 | 0.99999946 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.08234330900782977 | |
1636148068921376768 | Gaia DR3 3216470840133093504 | 3216470840133093504 | 400465001 | 2016.0 | 85.30747238821475 | 0.29184374 | -2.38949359231377 | 0.26074883 | 0.12019260367543594 | 0.33985 | 0.35366368 | 5.1894574 | 1.7876459824526552 | 0.36385092 | -4.871836205810002 | 0.2897296 | -0.09265526 | -0.0014098006 | -0.31270424 | 0.17439121 | -0.19470231 | 0.19349204 | -0.57027817 | 0.14670835 | 0.18696235 | -0.098352544 | 363 | 0 | 360 | 3 | 0.86954176 | 431.9599 | 0.8580658 | 1.1291534 | 95 | False | -- | 1.1637046 | 0.07667623 | -0.1388337 | -0.07941982 | -0.006895077 | -0.116873085 | 0.1331642 | 43 | 20 | 0.52750075 | 45 | 28 | 0 | 0.0151079735 | 6.0423245 | 0 | 0 | 1.031905 | 0.20595434 | 0.25317675 | 0.2603947 | 0.5014082 | -76.88399 | -3.9765499 | -21.605133 | -43.848877 | False | 357 | 265.88909242259996 | 0.897993 | 296.0926 | 19.625616 | 34 | 51.091312482354034 | 6.8466034 | 7.462286 | 21.067675 | 41 | 406.2893467231781 | 8.791597 | 46.21337 | 18.225807 | 1.7201934 | 0 | 0 | 0 | 2 | 0 | 2.8418674 | 1.4420586 | 1.3998089 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 206.92225446615564 | -16.6887610547889 | 84.7935869203766 | -25.744006573347082 | False | False | 0 | False | False | False | False | False | False | False | False | 8.483602e-13 | 5.134769e-13 | 0.9999985 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.08269446496314736 | |
1636148068921376768 | Gaia DR3 3216443872025058816 | 3216443872025058816 | 925732867 | 2016.0 | 85.24559042309376 | 0.71123976 | -2.535389226550673 | 0.73737574 | 0.8980238349417092 | 0.9670169 | 0.9286537 | 1.5929452 | -1.4791026414262343 | 0.8477286 | -0.5913795705051671 | 0.7786666 | -0.2839063 | 0.3210551 | -0.23774688 | 0.2605932 | -0.51915574 | 0.22001855 | -0.61014396 | -0.19906428 | 0.4816959 | -0.21136881 | 217 | 0 | 215 | 2 | 2.8487191 | 283.3687 | 1.5834634 | 1.1608537 | 95 | False | -- | 1.6825651 | 0.205878 | -0.3583018 | 0.26714784 | -0.16991253 | -0.030751199 | -0.10089172 | 25 | 16 | 1.3951224 | 26 | 13 | 0 | 0.004611447 | 65.27896 | 0 | 0 | 1.1408558 | 0.35099515 | 0.18764296 | 0.354644 | 0.6033324 | -63.270237 | 8.353648 | -27.99232 | -44.789764 | False | 213 | 116.43417552584557 | 0.8913834 | 130.62187 | 20.522165 | 16 | 50.024253993893815 | 9.838917 | 5.0843253 | 21.090591 | 22 | 124.74988720000201 | 8.939355 | 13.955133 | 19.507795 | 1.5010554 | 0 | 0 | 0 | 0 | 0 | 1.5827961 | 0.56842613 | 1.01437 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 207.02730810483163 | -16.811187434288154 | 84.71905604380503 | -25.88755596761321 | False | False | 0 | False | False | False | False | False | False | False | False | 1.085153e-07 | 5.787982e-09 | 0.9999933 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.08286217986852269 | |
1636148068921376768 | Gaia DR3 3216455653128695936 | 3216455653128695936 | 1467422921 | 2016.0 | 85.29328038861492 | 0.2429748 | -2.526244532656098 | 0.23323357 | 7.187770844565762 | 0.2993434 | 24.01179 | 36.290695 | -33.9237172532513 | 0.2799555 | 12.891699735107602 | 0.25018305 | -0.0739246 | 0.051945604 | -0.34340528 | 0.11745921 | -0.23482792 | 0.14009184 | -0.67943627 | -0.004798767 | 0.24896738 | -0.115868084 | 302 | 0 | 300 | 2 | 0.91878456 | 374.8465 | 0.9050687 | 2.162002 | 95 | False | -- | 1.15316 | 0.06230389 | -0.1844487 | -0.073425606 | -0.014452084 | -0.012071895 | 0.048439857 | 35 | 20 | 0.4237814 | 38 | 26 | 0 | 0.018915895 | 11.662993 | 0 | 0 | 1.0369805 | 0.22564329 | 0.2900915 | 0.27226767 | 0.43290338 | -72.82827 | 0.47325253 | -21.18871 | -44.038074 | False | 291 | 415.48303554301236 | 1.1920303 | 348.55072 | 19.140984 | 26 | 54.11411024598962 | 8.189754 | 6.607538 | 21.005266 | 35 | 627.9098762932185 | 13.446248 | 46.697777 | 17.753153 | 1.6415206 | 0 | 1 | 0 | 2 | 0 | 3.2521133 | 1.8642826 | 1.3878307 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | NOT_AVAILABLE | 207.04190534382894 | -16.76473078701521 | 84.77234739467015 | -25.880154554757564 | False | False | 0 | False | False | False | False | False | False | False | False | 8.234745e-13 | 1.9977706e-09 | 0.9999949 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.08287548585527736 |
reduced_query = gaia_query['ra', 'dec', 'phot_g_mean_mag']
reduced_query.write('gaia_no_pm.cat', format='ascii.commented_header', overwrite=True)
reduced_query
ra | dec | phot_g_mean_mag |
---|---|---|
deg | deg | mag |
float64 | float64 | float32 |
85.25078206874738 | -2.444257621037541 | 19.836756 |
85.24865858921503 | -2.441354584616136 | 17.722948 |
85.25474417063919 | -2.470084090608095 | 17.202978 |
85.26833524857398 | -2.4416029853336667 | 20.263578 |
85.2386085747217 | -2.462292300986681 | 20.337946 |
85.23467309871081 | -2.4498085573057633 | 20.23374 |
85.27075582329469 | -2.441307234608435 | 19.156166 |
85.25578005166672 | -2.4765054474694934 | 20.352 |
85.27451682697576 | -2.472305714228985 | 20.950966 |
... | ... | ... |
85.31116982575814 | -2.5106681948456453 | 19.762535 |
85.18852621317357 | -2.405656267543347 | 19.284597 |
85.19030586577739 | -2.5028819323642013 | 17.53799 |
85.17292618358479 | -2.4623957493034743 | 19.089468 |
85.30495708910514 | -2.5178904392586623 | 20.880104 |
85.33205874915119 | -2.425249860759321 | 20.068647 |
85.30747238821475 | -2.38949359231377 | 19.625616 |
85.24559042309376 | -2.535389226550673 | 20.522165 |
85.29328038861492 | -2.526244532656098 | 19.140984 |
2.2 Create a catalog of Gaia DR3 sources with Proper Motion Data #
This method uses the image FLT footprints and gives 161 sources, compared to 183 with the prior method.
pm_cat = create_astrometric_catalog(sorted(glob.glob('*flt.fits')))
pm_cat.write('gaia_pm.cat', overwrite=True, format='ascii.no_header')
len(pm_cat)
2024218174307 INFO src=drizzlepac.haputils.astrometric_utils- Getting catalog using:
http://gsss.stsci.edu/webservices/vo/CatalogSearch.aspx?RA=85.25357496441966&DEC=-2.4518021150880305&SR=0.07776401075620538&FORMAT=CSV&CAT=GAIAedr3&MINDET=5&EPOCH=2012.839
2024218174308 INFO src=drizzlepac.haputils.astrometric_utils- Created catalog 'ref_cat.ecsv' with 161 sources
161
2.3 Run TweakReg
#
Next we run TweakReg
on the visit-level drizzled (DRZ) images and align to the Gaia catalog with proper motion data.
Because the fit RMS values for the MAST products were large for some visits, we allow for a larger than usual search radius of 1”. We also set the conv_width
value slightly higher than the recommended value of 2.5 for WFC3/IR data in order to use barely resolved sources for alignment.
refcat = 'gaia_pm.cat' # Use the catalog with proper motion data
drz_files = sorted(glob.glob('*drz.fits'))
tweakreg.TweakReg(drz_files,
imagefindcfg={'threshold': 4, 'conv_width': 4.5},
minobj=3,
shiftfile=True,
outshifts='shift_drz.txt',
refcat=refcat,
searchrad=1,
ylimit=0.4,
nclip=1,
updatehdr=False, # change later when you verify the alignment works
interactive=False)
# clear_output()
Setting up logfile : tweakreg.log
TweakReg Version 3.7.0.1 started at: 17:43:08.371 (05/08/2024)
Version Information
--------------------
Python Version 3.11.9 (main, Jul 15 2024, 21:50:21) [GCC 11.4.0]
numpy Version -> 1.26.4
astropy Version -> 6.1.2
stwcs Version -> 1.7.3
photutils Version -> 1.12.0
Finding shifts for:
ibxl50030_drz.fits
ibxl51030_drz.fits
ibxl52030_drz.fits
ibxl53030_drz.fits
ibxl54030_drz.fits
ibxl55030_drz.fits
ibxl56030_drz.fits
ibxl57030_drz.fits
ibxl58030_drz.fits
=== Source finding for image 'ibxl50030_drz.fits':
# Source finding for 'ibxl50030_drz.fits', EXT=('SCI', 1) started at: 17:43:08.419 (05/08/2024)
Found 59 objects.
=== FINAL number of objects in image 'ibxl50030_drz.fits': 59
=== Source finding for image 'ibxl51030_drz.fits':
# Source finding for 'ibxl51030_drz.fits', EXT=('SCI', 1) started at: 17:43:08.515 (05/08/2024)
Found 66 objects.
=== FINAL number of objects in image 'ibxl51030_drz.fits': 66
=== Source finding for image 'ibxl52030_drz.fits':
# Source finding for 'ibxl52030_drz.fits', EXT=('SCI', 1) started at: 17:43:08.608 (05/08/2024)
Found 76 objects.
=== FINAL number of objects in image 'ibxl52030_drz.fits': 76
=== Source finding for image 'ibxl53030_drz.fits':
# Source finding for 'ibxl53030_drz.fits', EXT=('SCI', 1) started at: 17:43:08.700 (05/08/2024)
Found 32 objects.
=== FINAL number of objects in image 'ibxl53030_drz.fits': 32
=== Source finding for image 'ibxl54030_drz.fits':
# Source finding for 'ibxl54030_drz.fits', EXT=('SCI', 1) started at: 17:43:08.791 (05/08/2024)
Found 41 objects.
=== FINAL number of objects in image 'ibxl54030_drz.fits': 41
=== Source finding for image 'ibxl55030_drz.fits':
# Source finding for 'ibxl55030_drz.fits', EXT=('SCI', 1) started at: 17:43:08.884 (05/08/2024)
Found 83 objects.
=== FINAL number of objects in image 'ibxl55030_drz.fits': 83
=== Source finding for image 'ibxl56030_drz.fits':
# Source finding for 'ibxl56030_drz.fits', EXT=('SCI', 1) started at: 17:43:08.977 (05/08/2024)
Found 57 objects.
=== FINAL number of objects in image 'ibxl56030_drz.fits': 57
=== Source finding for image 'ibxl57030_drz.fits':
# Source finding for 'ibxl57030_drz.fits', EXT=('SCI', 1) started at: 17:43:09.06 (05/08/2024)
Found 80 objects.
=== FINAL number of objects in image 'ibxl57030_drz.fits': 80
=== Source finding for image 'ibxl58030_drz.fits':
# Source finding for 'ibxl58030_drz.fits', EXT=('SCI', 1) started at: 17:43:09.159 (05/08/2024)
Found 88 objects.
=== FINAL number of objects in image 'ibxl58030_drz.fits': 88
===============================================================
Performing alignment in the projection plane defined by the WCS
derived from 'ibxl50030_drz.fits'
===============================================================
====================
Performing fit for: ibxl50030_drz.fits
Matching sources from 'ibxl50030_drz.fits' with sources from reference catalog 'gaia_pm.cat'
Computing initial guess for X and Y shifts...
Found initial X and Y shifts of 0.2027, 0.2027 with significance of 9 and 9 matches
Found 9 matches for ibxl50030_drz.fits...
Computed rscale fit for ibxl50030_drz.fits :
XSH: -0.0132 YSH: -0.0611 ROT: 359.9979222 SCALE: 1.000034
FIT XRMS: 0.036 FIT YRMS: 0.033
FIT RMSE: 0.049 FIT MAE: 0.044
RMS_RA: 1.5e-06 (deg) RMS_DEC: 9.6e-07 (deg)
Final solution based on 9 objects.
wrote XY data to: ibxl50030_drz_catalog_fit.match
Total # points: 9
# of points after clipping: 9
Total # points: 9
# of points after clipping: 9
====================
Performing fit for: ibxl51030_drz.fits
Matching sources from 'ibxl51030_drz.fits' with sources from reference catalog 'gaia_pm.cat'
Computing initial guess for X and Y shifts...
Found initial X and Y shifts of 0.2027, 0.2027 with significance of 8.485 and 12 matches
Found 12 matches for ibxl51030_drz.fits...
Computed rscale fit for ibxl51030_drz.fits :
XSH: 0.1506 YSH: -0.0723 ROT: 359.9953417 SCALE: 1.000079
FIT XRMS: 0.026 FIT YRMS: 0.039
FIT RMSE: 0.047 FIT MAE: 0.04
RMS_RA: 1.1e-06 (deg) RMS_DEC: 1.2e-06 (deg)
Final solution based on 12 objects.
wrote XY data to: ibxl51030_drz_catalog_fit.match
Total # points: 12
# of points after clipping: 12
Total # points: 12
# of points after clipping: 12
====================
Performing fit for: ibxl52030_drz.fits
Matching sources from 'ibxl52030_drz.fits' with sources from reference catalog 'gaia_pm.cat'
Computing initial guess for X and Y shifts...
Found initial X and Y shifts of 0.07773, 0.4527 with significance of 6.139 and 8 matches
Found 7 matches for ibxl52030_drz.fits...
Computed rscale fit for ibxl52030_drz.fits :
XSH: 0.2701 YSH: 0.2527 ROT: 359.9900691 SCALE: 0.999944
FIT XRMS: 0.046 FIT YRMS: 0.034
FIT RMSE: 0.058 FIT MAE: 0.053
RMS_RA: 1.8e-06 (deg) RMS_DEC: 9.4e-07 (deg)
Final solution based on 7 objects.
wrote XY data to: ibxl52030_drz_catalog_fit.match
Total # points: 7
# of points after clipping: 7
Total # points: 7
# of points after clipping: 7
====================
Performing fit for: ibxl53030_drz.fits
Matching sources from 'ibxl53030_drz.fits' with sources from reference catalog 'gaia_pm.cat'
Computing initial guess for X and Y shifts...
Found initial X and Y shifts of 0.2027, 0.2027 with significance of 5 and 5 matches
Found 5 matches for ibxl53030_drz.fits...
Computed rscale fit for ibxl53030_drz.fits :
XSH: -0.1291 YSH: -0.3033 ROT: 359.9975685 SCALE: 1.000116
FIT XRMS: 0.023 FIT YRMS: 0.048
FIT RMSE: 0.054 FIT MAE: 0.046
RMS_RA: 1.1e-06 (deg) RMS_DEC: 1.6e-06 (deg)
Final solution based on 5 objects.
wrote XY data to: ibxl53030_drz_catalog_fit.match
Total # points: 5
# of points after clipping: 5
Total # points: 5
# of points after clipping: 5
====================
Performing fit for: ibxl54030_drz.fits
Matching sources from 'ibxl54030_drz.fits' with sources from reference catalog 'gaia_pm.cat'
Computing initial guess for X and Y shifts...
Found initial X and Y shifts of 0.2027, 0.2027 with significance of 6.261 and 7 matches
Found 7 matches for ibxl54030_drz.fits...
Computed rscale fit for ibxl54030_drz.fits :
XSH: 0.0227 YSH: 0.2099 ROT: 0.01677810197 SCALE: 1.000314
FIT XRMS: 0.021 FIT YRMS: 0.034
FIT RMSE: 0.04 FIT MAE: 0.036
RMS_RA: 9.3e-07 (deg) RMS_DEC: 1.1e-06 (deg)
Final solution based on 7 objects.
wrote XY data to: ibxl54030_drz_catalog_fit.match
Total # points: 7
# of points after clipping: 7
Total # points: 7
# of points after clipping: 7
====================
Performing fit for: ibxl55030_drz.fits
Matching sources from 'ibxl55030_drz.fits' with sources from reference catalog 'gaia_pm.cat'
Computing initial guess for X and Y shifts...
Found initial X and Y shifts of 0.2027, 0.2027 with significance of 8.165 and 10 matches
Found 10 matches for ibxl55030_drz.fits...
Computed rscale fit for ibxl55030_drz.fits :
XSH: -0.1110 YSH: -0.0133 ROT: 0.001558507484 SCALE: 0.999874
FIT XRMS: 0.042 FIT YRMS: 0.045
FIT RMSE: 0.062 FIT MAE: 0.057
RMS_RA: 1.7e-06 (deg) RMS_DEC: 1.4e-06 (deg)
Final solution based on 10 objects.
wrote XY data to: ibxl55030_drz_catalog_fit.match
Total # points: 10
# of points after clipping: 10
Total # points: 10
# of points after clipping: 10
====================
Performing fit for: ibxl56030_drz.fits
Matching sources from 'ibxl56030_drz.fits' with sources from reference catalog 'gaia_pm.cat'
Computing initial guess for X and Y shifts...
Found initial X and Y shifts of 0.2027, -0.7973 with significance of 5 and 5 matches
Found 5 matches for ibxl56030_drz.fits...
Computed rscale fit for ibxl56030_drz.fits :
XSH: -0.2514 YSH: -0.3965 ROT: 0.001077725127 SCALE: 1.000291
FIT XRMS: 0.18 FIT YRMS: 0.053
FIT RMSE: 0.18 FIT MAE: 0.15
RMS_RA: 6.5e-06 (deg) RMS_DEC: 8.9e-07 (deg)
Final solution based on 5 objects.
wrote XY data to: ibxl56030_drz_catalog_fit.match
Total # points: 5
# of points after clipping: 5
Total # points: 5
# of points after clipping: 5
====================
Performing fit for: ibxl57030_drz.fits
Matching sources from 'ibxl57030_drz.fits' with sources from reference catalog 'gaia_pm.cat'
Computing initial guess for X and Y shifts...
Found initial X and Y shifts of 0.2027, 0.2027 with significance of 12 and 12 matches
Found 12 matches for ibxl57030_drz.fits...
Computed rscale fit for ibxl57030_drz.fits :
XSH: 0.0136 YSH: 0.0748 ROT: 0.0002822969294 SCALE: 1.000050
FIT XRMS: 0.037 FIT YRMS: 0.052
FIT RMSE: 0.064 FIT MAE: 0.055
RMS_RA: 1.6e-06 (deg) RMS_DEC: 1.6e-06 (deg)
Final solution based on 12 objects.
wrote XY data to: ibxl57030_drz_catalog_fit.match
Total # points: 12
# of points after clipping: 12
Total # points: 12
# of points after clipping: 12
====================
Performing fit for: ibxl58030_drz.fits
Matching sources from 'ibxl58030_drz.fits' with sources from reference catalog 'gaia_pm.cat'
Computing initial guess for X and Y shifts...
Found initial X and Y shifts of 0.2027, 0.2027 with significance of 13.57 and 15 matches
Found 15 matches for ibxl58030_drz.fits...
Computed rscale fit for ibxl58030_drz.fits :
XSH: 0.1882 YSH: 0.3442 ROT: 359.9942141 SCALE: 1.000085
FIT XRMS: 0.081 FIT YRMS: 0.05
FIT RMSE: 0.095 FIT MAE: 0.078
RMS_RA: 3.1e-06 (deg) RMS_DEC: 1.3e-06 (deg)
Final solution based on 15 objects.
wrote XY data to: ibxl58030_drz_catalog_fit.match
Total # points: 15
# of points after clipping: 15
Total # points: 15
# of points after clipping: 15
Writing out shiftfile : shift_drz.txt
Trailer file written to: tweakreg.log
# If the alignment is unsuccessful, stop the notebook
with open('shift_drz.txt', 'r') as shift:
for line_number, line in enumerate(shift, start=1):
if "nan" in line:
raise ValueError(f'nan found in line {line_number} in shift file')
2.4 Inspect the shift file and fit quality #
# Read the shift file just created by tweakreg
# There are 7 columns including: filename, x-shift, y-shift, rotation, scale, x-RMS, and y-RMS
shift_table = Table.read('shift_drz.txt',
format='ascii.no_header',
names=['file', 'dx', 'dy', 'rot', 'scale', 'xrms', 'yrms'])
# Define the format for each column (excluding 'file').
formats = ['.2f', '.2f', '.3f', '.5f', '.2f', '.2f']
# Iterate over the columns 'dx', 'dy', 'rot', 'scale', 'xrms', 'yrms'
for i, col in enumerate(shift_table.colnames[1:]):
# Apply the format to the current column
shift_table[col].format = formats[i]
# Display the table in the notebook
shift_table
file | dx | dy | rot | scale | xrms | yrms |
---|---|---|---|---|---|---|
str18 | float64 | float64 | float64 | float64 | float64 | float64 |
ibxl50030_drz.fits | -0.01 | -0.06 | 359.998 | 1.00003 | 0.04 | 0.03 |
ibxl51030_drz.fits | 0.15 | -0.07 | 359.995 | 1.00008 | 0.03 | 0.04 |
ibxl52030_drz.fits | 0.27 | 0.25 | 359.990 | 0.99994 | 0.05 | 0.03 |
ibxl53030_drz.fits | -0.13 | -0.30 | 359.998 | 1.00012 | 0.02 | 0.05 |
ibxl54030_drz.fits | 0.02 | 0.21 | 0.017 | 1.00031 | 0.02 | 0.03 |
ibxl55030_drz.fits | -0.11 | -0.01 | 0.002 | 0.99987 | 0.04 | 0.05 |
ibxl56030_drz.fits | -0.25 | -0.40 | 0.001 | 1.00029 | 0.18 | 0.05 |
ibxl57030_drz.fits | 0.01 | 0.07 | 0.000 | 1.00005 | 0.04 | 0.05 |
ibxl58030_drz.fits | 0.19 | 0.34 | 359.994 | 1.00008 | 0.08 | 0.05 |
Note that there are large residual rotation and scale terms in the shift file for several visits in the MAST data products. These will be corrected when we run TweakReg
an additional time and update the WCS in Section 2.6 below.
match_files = sorted(glob.glob('*_drz_catalog_fit.match'))
for f in match_files:
input = ascii.read(f)
print(f'Number of matches for {f} {len(input)}')
Number of matches for ibxl50030_drz_catalog_fit.match 9
Number of matches for ibxl51030_drz_catalog_fit.match 12
Number of matches for ibxl52030_drz_catalog_fit.match 7
Number of matches for ibxl53030_drz_catalog_fit.match 5
Number of matches for ibxl54030_drz_catalog_fit.match 7
Number of matches for ibxl55030_drz_catalog_fit.match 10
Number of matches for ibxl56030_drz_catalog_fit.match 5
Number of matches for ibxl57030_drz_catalog_fit.match 12
Number of matches for ibxl58030_drz_catalog_fit.match 15
Next we compare with the MAST WCS solutions, number of matches and fit RMS values. Since there are only 5 Gaia sources in Visits 53 and 56, these did not have a successful Gaia fit during MAST processing and instead were aligned to the next catalog in the priority list, GSC v2.4.2. (Currently the minimum number of matches for a successful fit is 6, but this will updated to 10 in summer 2024.
wcstable
FILENAME | DETECTOR | WCSNAME | NMATCHES | RMS_RA | RMS_DEC | RMS_RA_pix | RMS_DEC_pix |
---|---|---|---|---|---|---|---|
str18 | str2 | str30 | int64 | float64 | float64 | float64 | float64 |
ibxl50030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 8 | 5.4 | 10.4 | 0.04 | 0.08 |
ibxl51030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 11 | 13.5 | 8.2 | 0.11 | 0.06 |
ibxl52030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 8 | 23.5 | 19.3 | 0.18 | 0.15 |
ibxl53030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GSC242 | 14 | 64.7 | 87.6 | 0.5 | 0.68 |
ibxl54030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 7 | 26.0 | 23.9 | 0.2 | 0.19 |
ibxl55030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 10 | 9.8 | 7.9 | 0.08 | 0.06 |
ibxl56030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GSC242 | 18 | 65.4 | 93.3 | 0.51 | 0.73 |
ibxl57030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 12 | 8.4 | 8.2 | 0.07 | 0.06 |
ibxl58030_drz.fits | IR | IDC_w3m18525i-FIT_REL_GAIAeDR3 | 15 | 35.5 | 36.7 | 0.28 | 0.29 |
2.5 Overplot matched sources and inspect fit residuals #
Here we overplot the HST sources which were successfully matched with Gaia eDR3 and we look at the astrometric fit residual PNG plots.
While we inspect only two visits (52 and 53) at a time, and additional visits may be uncommented in the cell below.
# Define the rootnames for the two FITS files to be compared
# Uncomment the pairs you want to use
# rootname_A = 'ibxl50030'
# rootname_B = 'ibxl51030'
rootname_A = 'ibxl52030'
rootname_B = 'ibxl53030'
# rootname_A = 'ibxl54030'
# rootname_B = 'ibxl55030'
# rootname_A = 'ibxl56030'
# rootname_B = 'ibxl57030'
# rootname_A = 'ibxl57030'
# rootname_B = 'ibxl58030'
# Create subplots with 1 row and 2 columns
fig, [ax1, ax2] = plt.subplots(1, 2, figsize=(13, 10))
# Open the FITS files and extract the data from the 'SCI' extension
data_a = fits.open(rootname_A+'_drz.fits')['SCI', 1].data
data_b = fits.open(rootname_B+'_drz.fits')['SCI', 1].data
# Display the images in grayscale with a stretch from 0 to 2
ax1.imshow(data_a, cmap='Greys', origin='lower', vmin=0, vmax=2)
ax2.imshow(data_b, cmap='Greys', origin='lower', vmin=0, vmax=2)
# Read the matching catalog files for both rootnames
match_tab_a = ascii.read(rootname_A+'_drz_catalog_fit.match')
match_tab_b = ascii.read(rootname_B+'_drz_catalog_fit.match')
# Extract x and y coordinates from the matching catalogs
x_coord_a, y_coord_a = match_tab_a['col11'], match_tab_a['col12']
x_coord_b, y_coord_b = match_tab_b['col11'], match_tab_b['col12']
# Plot the coordinates on the images with red circles
ax1.scatter(x_coord_a, y_coord_a, s=30, edgecolor='r', facecolor='None')
ax2.scatter(x_coord_b, y_coord_b, s=30, edgecolor='r', facecolor='None')
# Set the titles for the subplots, including the number of matches
ax1.set_title(rootname_A+f' N = {len(match_tab_a)} Gaia Matches', fontsize=20)
ax2.set_title(rootname_B+f' N = {len(match_tab_b)} Gaia Matches', fontsize=20)
fig.tight_layout()
# Load, display, and inspect fit residual PNG files
img_A = mpimg.imread(f'residuals_{rootname_A}_drz.png')
img_B = mpimg.imread(f'residuals_{rootname_B}_drz.png')
# Create subplots for the residual images
fig, axs = plt.subplots(1, 2, figsize=(20, 10), dpi=200)
axs[0].imshow(img_A)
axs[1].imshow(img_B)
# Remove unnecessary axis from the residual images
axs[0].axis('off')
axs[1].axis('off')
# Adjust layout to minimize margins and display plots
fig.tight_layout()
plt.show()
2.6 Rerun TweakReg
and update the header WCS #
Once we are happy with the alignment, we run TweakReg
again with the same parameters but with the updatehdr=True
.
refcat = 'gaia_pm.cat' # Use the catalog with proper motion data
tweakreg.TweakReg(drz_files,
imagefindcfg={'threshold': 4, 'conv_width': 4.5},
minobj=4,
shiftfile=False,
refcat=refcat,
searchrad=1,
ylimit=0.4,
nclip=1,
updatehdr=True, # update header
interactive=False)
clear_output()
2.7 Run TweakBack
to propogate the WCS to the FLT files #
Finally, we run Tweakback
on the aligned DRZ files to propogate the updated WCS information back to the FLT files.
for f in drz_files:
tb_input = f+'[sci,1]'
with fits.open(f) as hdu:
tweakback.apply_tweak(tb_input, orig_wcs_name=hdu[1].header['WCSNAME'])
clear_output()
3. Compare skymethod
options in AstroDrizzle #
Now that the FLT files contain the updated WCS solutions, we explore different algorithms for estimating the sky.
3.1 skymethod = 'localmin'
#
When using AstroDrizzle
to compute the sky in each frame, ‘localmin’ will compute a common sky value for all chips of a given exposure, using the minimum sky value from all chips. This process is repeated for each input image. This algorithm is recommended when images are dominated by blank sky instead of extended, diffuse sources.
See readthedocs for more details on sky subtraction options.
In the command below, the aligned FLT frames are sky subtracted and drizzled together.
Because the WFC3/IR data products are already cleaned of cosmic rays during calwf3 processing, cosmic-ray rejection is turned off in AstroDrizzle by setting the parameters driz_separate
, median
, blot
, and driz_cr
to ‘False’. Note that final_bits=16
means only the stable hot pixels are treated as good.
sky = 'localmin'
astrodrizzle.AstroDrizzle('*flt.fits',
output='f160w_localmin',
preserve=False,
context=False,
skymethod=sky,
driz_separate=False, median=False, blot=False, driz_cr=False, # CR-rej turned off
final_bits='16',
final_wcs=True,
final_rot=257.)
clear_output()
3.2 skymethod = 'match'
#
When skymethod
is set to ‘match’, differences in sky values between images in common sky regions will be computed. Thus, sky values will be relative (delta) to the sky computed in one of the input images whose sky value will be set to and reported as 0. This setting “equalizes” sky values between the images in large mosaics.
This is the recommended setting for images containing diffuse sources (e.g., galaxies, nebulae) covering significant parts of the image.
sky = 'match'
astrodrizzle.AstroDrizzle('*flt.fits',
output='f160w_match',
preserve=False,
context=False,
skymethod=sky,
driz_separate=False, median=False, blot=False, driz_cr=False, # CRREJ=None
final_bits='16',
final_wcs=True,
final_rot=257.)
clear_output()
3.3 skymethod = 'globalmin+match'
#
When skymethod
is set to ‘globalmin+match’, AstroDrizzle will first find a minimum “global” sky value in all input images and then use the ‘match’ method to equalize sky values between images.
sky = 'globalmin+match'
astrodrizzle.AstroDrizzle('*flt.fits',
output='f160w_globalmin_match',
preserve=False,
context=False,
skymethod=sky,
driz_separate=False, median=False, blot=False, driz_cr=False, # CRREJ=None
final_bits='16',
final_wcs=True,
final_rot=257.)
clear_output()
3.4 skymethod = 'globalmin'
#
When skymethod
is set to ‘globalmin’, a common sky value will be computed for all exposures. AstroDrizzle will compute sky values for each chip/image extension, find the minimum sky value from all the exposures, and then subtract that minimum sky value from all chips in all images.
This method may be useful when input images already have matched background values.
sky = 'globalmin'
astrodrizzle.AstroDrizzle('*flt.fits',
output='f160w_globalmin',
preserve=False,
context=False,
skymethod=sky,
driz_separate=False, median=False, blot=False, driz_cr=False, # CRREJ=None
final_bits='16',
final_wcs=True,
final_rot=257.)
clear_output()
4. Compare the MDRIZSKY values for each method #
Below we provide a gif comparing the upper portion of the final drizzled image. We cycle through three drizzled images produced using different skymethod
algorithms:
Next we print the sky values computed for each image using the four different methods.
mdrizsky_val = pandas.DataFrame({'rootname': fits.getdata('f160w_globalmin_drz_sci.fits', 1)['rootname'],
'local': fits.getdata('f160w_localmin_drz_sci.fits', 1)['mdrizsky'],
'globalmin': fits.getdata('f160w_globalmin_drz_sci.fits', 1)['mdrizsky'],
'globalmin_match': fits.getdata('f160w_globalmin_match_drz_sci.fits', 1)['mdrizsky'],
'match': fits.getdata('f160w_match_drz_sci.fits', 1)['mdrizsky']})
mdrizsky_val
rootname | local | globalmin | globalmin_match | match | |
---|---|---|---|---|---|
0 | ibxl50clq | 1.149898 | 0.795737 | 0.797206 | 0.029825 |
1 | ibxl50cqq | 1.162179 | 0.795737 | 0.793516 | 0.026135 |
2 | ibxl51eoq | 1.172860 | 0.795737 | 0.809310 | 0.041929 |
3 | ibxl51etq | 1.169722 | 0.795737 | 0.798349 | 0.030968 |
4 | ibxl52k0q | 0.800908 | 0.795737 | 0.800908 | 0.033527 |
5 | ibxl52k5q | 0.795737 | 0.795737 | 0.789151 | 0.021769 |
6 | ibxl53kxq | 1.201764 | 0.795737 | 0.811705 | 0.044323 |
7 | ibxl53l9q | 1.182859 | 0.795737 | 0.791296 | 0.023914 |
8 | ibxl54bgq | 1.169069 | 0.795737 | 0.791586 | 0.024204 |
9 | ibxl54blq | 1.162565 | 0.795737 | 0.786370 | 0.018989 |
10 | ibxl55f0q | 1.005999 | 0.795737 | 0.784566 | 0.017185 |
11 | ibxl55f5q | 1.009036 | 0.795737 | 0.784839 | 0.017458 |
12 | ibxl56huq | 1.362230 | 0.795737 | 0.794645 | 0.027263 |
13 | ibxl56i2q | 1.361166 | 0.795737 | 0.789920 | 0.022538 |
14 | ibxl57adq | 1.132304 | 0.795737 | 0.774515 | 0.007133 |
15 | ibxl57aiq | 1.119097 | 0.795737 | 0.773648 | 0.006266 |
16 | ibxl58sqq | 0.804495 | 0.795737 | 0.768938 | 0.001557 |
17 | ibxl58svq | 0.799019 | 0.795737 | 0.767381 | 0.000000 |
These computed sky values can be visualized in the plot below. To reiterate, the MDRIZSKY keyword reports the value subtracted from each FLC image prior to drizzling, and not the sky level itself. Thus the values for skymethod='match'
are close to zero.
We also note that varying background levels across the individual tiles result in inaccurate sky background determination when skymethod='localmin'
and thus a mismatched sky in the final mosaic.
index = mdrizsky_val.index.tolist()
globalmin = list(mdrizsky_val['globalmin'])
globalmin_match = list(mdrizsky_val['globalmin_match'])
match = list(mdrizsky_val['match'])
local = list(mdrizsky_val['local'])
# Plotting code:
fig = plt.figure(figsize=[7, 7])
plt.scatter(index, globalmin_match, color='magenta', label='Globalmin + Match')
plt.scatter(index, match, color='navy', label='Match')
plt.scatter(index, local, color='olive', label='Local')
plt.scatter(index, globalmin, color='orange', label='Globalmin')
plt.xlabel('Individual Images')
plt.ylabel('MDRIZSKY Value')
plt.legend(loc='best')
plt.xticks(index)
plt.tight_layout()
plt.show()
5. Display the ‘sky matched’ science mosaic and weight image #
Finally, we display the science and weight images for the combined mosaic.
sci = fits.getdata('f160w_match_drz_sci.fits')
fig = plt.figure(figsize=(10, 10), dpi=130)
plt.imshow(sci, vmin=0.5, vmax=3, cmap='Greys_r', origin='lower')
plt.colorbar(shrink=0.85, pad=0.01)
plt.show()
sci = fits.getdata('f160w_match_drz_wht.fits')
fig = plt.figure(figsize=(10, 10), dpi=130)
plt.imshow(sci, vmin=0, vmax=4000, cmap='Greys_r', origin='lower')
plt.colorbar(shrink=0.85, pad=0.01)
plt.show()
6. Conclusion #
Thank you for going through this notebook. You should now have all the necessary tools for assessing the
appropriate skymethod
parameter to use when combining images. After completing this notebook you
should be more familiar with:
• How to effectively use astroquery
to download FLT and DRZ files.
• Checking the WCS of images and aligning them to a reference catalog with TweakReg
.
• Combining data with AstroDrizzle
taking into account the skymethod
Congratulations, you have completed the notebook!
Additional Resources #
About this Notebook #
Created: 14 Dec 2018; C. Martlin & J. Mack
Updated: 16 Nov 2023; K. Huynh & J. Mack
Updated: 23 Jul 2024; J. Mack & B. Kuhn
Source: https://github.com/spacetelescope/hst_notebooks
Citations #
If you use Python packages for published research, please cite the authors. Follow these links for more
information about citing packages such as astropy
, astroquery
, matplotlib
, pandas
, etc.: