Synthetic Photometry Examples for WFC3#


Learning Goals#

By the end of this tutorial, you will:

  • Specify WFC3 bandpasses in stsynphot and define spectra with synphot.

  • Compute WFC3 zeropoint values and an encircled energy correction.

  • Renormalize a spectrum and predict its effective stimulus in another filter.

  • Find the photometric transformation between two bandpasses.

  • Find the UV color term across the two UVIS chips for different spectral types.

  • Plot bandpasses and spectra.

Table of Contents#

Introduction
1. Imports
2. Bandpasses and spectra

  • 2.1 Set up bandpasses

  • 2.2 Define spectra

3. Examples

  • Example 1a: Compute the inverse sensitivity and zeropoint

  • Example 1b: Compute an encircled energy correction

  • Example 2: Renormalize a spectrum and predict its effective stimulus in another filter

  • Example 3: Find the photometric transformation between two bandpasses

  • Example 4a: Find the UV color term across the two UVIS chips for different spectral types

  • Example 4b: Plot bandpasses and spectra

4. Conclusions
Additional Resources
About the Notebook
Citations

Introduction#

This notebook contains several examples of how to use the synphot and stsynphot modules for various photometric purposes.

synphot is a Python module that facilitates synthetic photometry, which has an extension module called stsynphot to add support for STScI missions. synphot is meant to be a replacement for AstroLib pysynphot.

Examples 1, 2, and 3 are based on those found in Section 9.1.10 of the 2018 version of the WFC3 Data Handbook.

stsynphot requires access to data distributed by the Calibration Data Reference System (CRDS) in order to operate. Both packages look for an environment variable called PYSYN_CDBS to find the directory containing these data.

Users can obtain these data files from the CDRS. Information on how to obtain the most up-to-date reference files (and what they contain) can be found here. An example of how to download the files with curl and set up this environment variable is presented below.

For detailed instructions on how to install and set up these packages, see the synphot and stsynphot documentation.

1. Imports#

This notebook assumes you have created the virtual environment in WFC3 Library’s installation instructions.

We import:

  • os for setting environment variables

  • numpy for handling array functions

  • matplotlib.pyplot for plotting data

  • synphot and stsynphot for evaluating synthetic photometry

  • astropy.units and synphot.units for handling units

Additionally, we will need to set the PYSYN_CDBS environment variable before importing stsynphot. We will also create a Vega spectrum using synphot’s inbuilt from_vega() method, as the latter package will supercede this method’s functionality and require a downloaded copy of the latest Vega spectrum to be provided.

%matplotlib inline

import os
import tarfile

import numpy as np
import matplotlib.pyplot as plt

import synphot as syn

from astropy import units as u
from synphot import units as su

vegaspec = syn.SourceSpectrum.from_vega()

This section obtains the WFC3 throughput component tables for use with stsynphot. This step only needs to be done once. If these reference files have already been downloaded, this section can be skipped.

!curl -O https://archive.stsci.edu/hlsps/reference-atlases/hlsp_reference-atlases_hst_multi_everything_multi_v11_sed.tar
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
  0  796M    0 2448k    0     0  2907k      0  0:04:40 --:--:--  0:04:40 2903k
  4  796M    4 36.3M    0     0  19.1M      0  0:00:41  0:00:01  0:00:40 19.1M
  9  796M    9 73.9M    0     0  25.9M      0  0:00:30  0:00:02  0:00:28 25.9M
 13  796M   13  107M    0     0  28.0M      0  0:00:28  0:00:03  0:00:25 28.0M
 16  796M   16  128M    0     0  26.5M      0  0:00:29  0:00:04  0:00:25 26.5M
 18  796M   18  144M    0     0  24.7M      0  0:00:32  0:00:05  0:00:27 28.4M
 20  796M   20  162M    0     0  23.6M      0  0:00:33  0:00:06  0:00:27 25.3M
 22  796M   22  179M    0     0  22.9M      0  0:00:34  0:00:07  0:00:27 21.1M
 24  796M   24  197M    0     0  22.3M      0  0:00:35  0:00:08  0:00:27 17.9M
 27  796M   27  216M    0     0  21.9M      0  0:00:36  0:00:09  0:00:27 17.4M
 29  796M   29  234M    0     0  21.6M      0  0:00:36  0:00:10  0:00:26 17.9M
 31  796M   31  253M    0     0  21.3M      0  0:00:37  0:00:11  0:00:26 18.2M
 34  796M   34  271M    0     0  21.1M      0  0:00:37  0:00:12  0:00:25 18.4M
 36  796M   36  290M    0     0  20.9M      0  0:00:37  0:00:13  0:00:24 18.4M
 38  796M   38  305M    0     0  20.5M      0  0:00:38  0:00:14  0:00:24 17.7M
 40  796M   40  320M    0     0  20.1M      0  0:00:39  0:00:15  0:00:24 17.0M
 42  796M   42  336M    0     0  19.9M      0  0:00:39  0:00:16  0:00:23 16.7M
 44  796M   44  353M    0     0  19.8M      0  0:00:40  0:00:17  0:00:23 16.3M
 46  796M   46  369M    0     0  19.5M      0  0:00:40  0:00:18  0:00:22 15.8M
 48  796M   48  383M    0     0  19
.2M      0  0:00:41  0:00:19  0:00:22 15.5M
 49  796M   49  397M    0     0  19.0M      0  0:00:41  0:00:20  0:00:21 15.4M
 51  796M   51  408M    0     0  18.7M      0  0:00:42  0:00:21  0:00:21 14.4M
 52  796M   52  420M    0     0  18.3M      0  0:00:43  0:00:22  0:00:21 13.2M
 54  796M   54  431M    0     0  18.0M      0  0:00:44  0:00:23  0:00:21 12.4M
 55  796M   55  443M    0     0  17.8M      0  0:00:44  0:00:24  0:00:20 12.1M
 57  796M   57  455M    0     0  17.6M      0  0:00:45  0:00:25  0:00:20 11.7M
 58  796M   58  468M    0     0  17.4M      0  0:00:45  0:00:26  0:00:19 11.8M
 60  796M   60  480M    0     0  17.2M      0  0:00:46  0:00:27  0:00:19 12.1M
 61  796M   61  489M    0     0  16.9M      0  0:00:46  0:00:28  0:00:18 11.5M
 62  796M   62  499M    0     0  16.7M      0  0:00:47  0:00:29  0:00:18 11.2M
 63  796M   63  508M    0     0  16.4M      0  0:00:48  0:00:30  0:00:18 10.5M
 64  796M   64  516M    0     0  16.2M      0  0:00:49  0:00:31  0:00:18 9859k
 65  796M   65  522M    0     0  15.9M      0  0:00:50  0:00:32  0:00:18 8669k
 66  796M   66  529M    0     0  15.6M      0  0:00:50  0:00:33  0:00:17 8267k
 67  796M   67  536M    0     0  15.4M      0  0:00:51  0:00:34  0:00:17 7566k
 68  796M   68  544M    0     0  15.1M      0  0:00:52  0:00:35  0:00:17 7246k
 69  796M   69  551M    0     0  14.9M      0  0:00:53  0:00:36  0:00:17 7168k
 69  796M   69  557M    0     0  14.7M      0  0:00:54  0:00:37  0:00:17 7022k
 70  796M   70  563M    0     0  14.4M      0  0:00:54  0:00:38  0:00:16 6827k
 71  796M   71  569M    0     0  14.2M      0  0:00:55  0:00:39  0:00:16 6749k
 72  796M   72  575M    0     0  14.0M      0  0:00:56  0:00:40  0:00:16 6376k
 72  796M   72  580M    0     0  13.8M      0  0:00:57  0:00:41  0:00:16 5911k
 73  796M   73  584M    0     0  13.6M      0  0:00:58  0:00:42  0:00:16 5576k
 73  796M   73  588M    0     0  13.4M      0  0:00:59  0:00:43  0:00:16 5256k
 74  796M   74  593M    0     0  13.2M      0  0:01:00  0:00:44  0:00:16 4841k
 75  796M   75  598M    0     0  13.0M      0  0:01:01  0:00:45  0:00:16 4696k
 75  796M   75  602M    0     0  12.8M      0  0:01:01  0:00:46  0:00:15 4629k
 76  796M   76  607M    0     0  12.6M      0  0:01:02  0:00:47  0:00:15 4738k
 76  796M   76  612M    0     0  12.5M      0  0:01:03  0:00:48  0:00:15 4775k
 77  796M   77  617M    0     0  12.3M      0  0:01:04  0:00:49  0:00:15 4842k
 78  796M   78  622M    0     0  12.2M      0  0:01:05  0:00:50  0:00:15 4940k
 78  796M   78  627M    0     0  12.1M      0  0:01:05  0:00:51  0:00:14 5059k
 79  796M   79  633M    0     0  11.9M      0  0:01:06  0:00:52  0:00:14 5370k
 80  796M   80  639M    0     0  11.8M      0  0:01:07  0:00:53  0:00:14 5555k
 81  796M   81  645M    0     0  11.7M      0  0:01:07  0:00:54  0:00:13 5742k
 81  796M   81  651M    0     0  11.6M      0  0:01:08  0:00:55  0:00:13 5920k
 82  796M   82  657M    0     0  11.5M      0  0:01:08  0:00:56  0:00:12 6154k
 83  796M   83  664M    0     0  11.4M      0  0:01:09  0:00:57  0:00:12 6287k
 84  796M   84  671M    0     0  11.4M      0  0:01:09  0:00:58  0:00:11 6564k
 85  796M   85  678M    0     0  11.3M      0  0:01:10  0:00:59  0:00:11 6768k
 86  796M   86  685M    0     0  11.2M      0  0:01:10  0:01:00  0:00:10 6942k
 86  796M   86  691M    0     0  11.1M      0  0:01:11  0:01:01  0:00:10 7048k
 87  796M   87  698M    0     0  11.1M      0  0:01:11  0:01:02  0:00:09 7041k
 88  796M   88  706M    0     0  11.0M      0  0:01:12  0:01:03  0:00:09 7110k
 89  796M   89  713M    0     0  11.0M      0  0:01:12  0:01:04  0:00:08 7287k
 90  796M   90  721M    0     0  10.9M      0  0:01:12  0:01:05  0:00:07 7547k
 91  796M   91  730M    0     0  10.9M      0  0:01:12  0:01:06  0:00:06 7856k
 92  796M   92  740M    0     0  10.9M      0  0:01:12  0:01:07  0:00:05 8531k
 94  796M   94  752M    0     0  10.9M      0  0:01:12  0:01:08  0:00:04 9395k
 96  796M   96  764M    0     0  10.9M      0  0:01:12  0:01:09  0:00:03 10.2M
 97  796M   97  780M    0     0  11.0M      0  0:01:12  0:01:10  0:00:02 11.6M
100  796M  100  796M    0     0  11.0M      0  0:01:11  0:01:11 --:--:-- 13.4M

Once the downloaded is complete, extract the file and set the environment variable PYSYN_CDBS to the path of the trds subdirectory. The next cell will do this for you, as long as the .tar file downloaded above has not been moved.

tar_archive = 'hlsp_reference-atlases_hst_multi_everything_multi_v11_sed.tar'
extract_to = 'hlsp_reference-atlases_hst_multi_everything_multi_v11_sed'
abs_extract_to = os.path.abspath(extract_to)

with tarfile.open(tar_archive, 'r') as tar:
    for member in tar.getmembers():
        member_path = os.path.abspath(os.path.join(abs_extract_to, member.name))
        if member_path.startswith(abs_extract_to):
            tar.extract(member, path=extract_to)   
        else:
            print(f"Skipped {member.name} due to potential security risk")

os.environ['PYSYN_CDBS'] = os.path.join(abs_extract_to, 'grp/redcat/trds/')

Now, after having set up PYSYN_CDBS, we import stsynphot. A warning regarding the Vega spectrum is expected here.

import stsynphot as stsyn
WARNING: Failed to load Vega spectrum from /home/runner/work/hst_notebooks/hst_notebooks/notebooks/WFC3/photometry_examples/hlsp_reference-atlases_hst_multi_everything_multi_v11_sed/grp/redcat/trds//calspec/alpha_lyr_stis_011.fits; Functionality involving Vega will be severely limited: FileNotFoundError(2, 'No such file or directory') [stsynphot.spectrum]

2. Bandpasses and spectra #

2.1 Set up bandpasses #

All of the examples below require us to define a bandpass. Bandpasses are defined in stsynphot using a string of comma-separated keywords that represents a particular observation mode (obsmode). For WFC3, an obsmode string will, at minimum, look something like: "wfc3, [detector], [filter]". E.g. "wfc3, uvis1, f606w" will get you the bandpass for the F606W filter on WFC3’s UVIS1 detector. One may also specify an aperture size in arcseconds with aper#value and a Modified Julian Date (to account for time-dependent changes in the UVIS detector sensitivity) with mjd#value.

The documentation here provides a further overview of how to construct an observation mode, and includes a link to the full set of available obsmode keywords.

2.2 Define spectra #

Examples 2-4 require us to define a spectrum. Examples for generating some commonly useful spectra using synphot are embedded here:

# Blackbody
bb_temp = 5800 * u.K

model = syn.models.BlackBody1D(bb_temp)
spec  = syn.SourceSpectrum(model)

# Power law 
pl_index = 0

model = syn.models.PowerLawFlux1D(amplitude=flux_in, x_0=wl_in, alpha=pl_index)
spec  = syn.SourceSpectrum(model)
                                  
# Load from a FITS table (e.g. a CALSPEC spectrum)
spec = syn.SourceSpectrum.from_file('/path/to/your/spectrum.fits')

Note:

  • synphot.models.BlackBody1D outputs a function according to Planck’s law, which means that the output unit carries an implicit “per unit solid angle,” in steradians. BlackBodyNorm1D, outputs a spectrum that is normalized to a 1 solar radius star at a distance of 1 kpc.

  • synphot.models.PowerLawFlux1D uses the definition \( f(x) = A (\frac{x}{x_0})^{-\alpha} \). We pass flux_in as \(A\), and wl_in as \(x_0\). Note the negative sign in front of the power law index \(\alpha\). The model can generate curves with \(x\) as either frequency or wavelength, but the example here assumes that wavelength will be used. The y-axis unit will be taken from \(A\).

  • A wide array of reference spectra are available for download from spectral atlases located here.

3. Examples#

Example 1a: Compute the inverse sensitivity and zeropoint#

Compute inverse sensitivity (PHOTFLAM) and zeropoint values (STmag, ABmag, and Vegamag) for F814W on UVIS1 in an infinite (6.0”) aperture.

This example should reproduce the values found in Table 6 of WFC3 ISR 2021-04, the relevant row of which is reproduced here:

Filter

Pivot Wavelength

PHOTFLAM

STMAG

ABMAG

VEGAMAG

F814W

8039.1 Å

1.4980e-19

25.961

25.127

24.699

We include the keywords 'aper#6.0' and 'mjd#55008' in our obsmode string to match the aperture and reference epoch used for the calculations in this ISR.

The WFC3 Zeropoints notebook, which can be found in the WFC3 Library, contains an example to perform this calculation iteratively over all UVIS and IR bandpasses and to compute ‘total system throughput tables’ for each mode.

First, we set up a bandpass based on our observation mode.

obsmode = 'wfc3, uvis1, f814w, aper#6.0, mjd#55008'
bp = stsyn.band(obsmode)

Then, we can find the unit response for the bandpass, which is the flux (in \(\text{erg } \text{cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}\), aka FLAM) that produces 1 electron per second. For this calculation, we must pass the HST primary mirror area.

uresp = bp.unit_response(stsyn.conf.area)

Next, we convert the unit response to magnitudes in the ST and AB systems. For the AB conversion, we need the bandpass pivot wavelength.

st = -2.5 * np.log10(uresp.value) - 21.1  

pivot = bp.pivot()                        # Pivot wavelength for ABmag conversion
ab = st - 5 * np.log10(pivot.value) + 18.6921

Converting the unit response for the bandpass to the vegamag system requires us to generate a synthetic Observation, which consists of Vega’s spectrum convolved with the bandpass.

obs = syn.Observation(vegaspec, bp, binset=bp.binset)
effstim = obs.effstim(flux_unit=su.FLAM)  # Effective stimulus for Vega observation
ve = -2.5 * np.log10(uresp/effstim)       # vegamag sensitivity value

Now, we can print our results.

print('Obsmode:', obsmode)
print('Pivot Wavelength: {:.1f}'.format(pivot))
print()
print('PHOTFLAM: {:.6}'.format(uresp))
print('STmag:    {:.3f}'.format(st))
print('ABmag:    {:.3f}'.format(ab))
print('VEGAMAG:  {:.3f}'.format(ve))
Obsmode: wfc3, uvis1, f814w, aper#6.0, mjd#55008
Pivot Wavelength: 8039.1 Angstrom

PHOTFLAM: 1.49941e-19 FLAM
STmag:    25.960
ABmag:    25.126
VEGAMAG:  24.698

Example 1b: Compute an encircled energy correction#

As an addendum to the previous example, we can calculate the unit response for the same bandpass, but with a ~10 pixel aperture (0.4”), and compute the encircled energy correction, in magnitudes, with respect to the infinite aperture.

First, we set up the new bandpass for the smaller aperture size.

obsmode_04 = 'wfc3, uvis1, f814w, aper#0.4, mjd#55008'  # Set obsmode string
bp_04 = stsyn.band(obsmode_04)

Then, we find the unit response for the new bandpass.

uresp_04 = bp_04.unit_response(stsyn.conf.area)

Finally, we convert the unit response to a magnitude in the ST system, and find the difference between it and the corresponding value for the infinite aperture. This represents the encircled energy correction from 10 pixels to infinity.

st_04 = -2.5 * np.log10(uresp_04.value) - 21.1

st_eecorr = st - st_04

print('EE Correction (10 pixels -> infinity): {:.3f}'.format(st_eecorr), 'mag')
EE Correction (10 pixels -> infinity): 0.110 mag

Example 2: Renormalize a spectrum and predict its magnitude in another bandpass#

Renormalize a 2,500 K blackbody spectrum to have 1 count/sec in the Johnson V band, and compute the predicted AB magnitude through the F110W filter on WFC3/IR.

This example reproduces the methods described in section 3 of WFC3 ISR 2014-16, but will automatically use the latest available spectra and throughput tables.

First, we define a Johnson V bandpass to which we normalize our spectrum.

vband = stsyn.band('johnson, v')

Then, we define the output bandpass for the calculation.

obsmode = 'wfc3, ir, f110w'
bp = stsyn.band(obsmode)

Next, we choose a 2500 K blackbody model, fit our spectrum to the model, and use the normalize method to normalize the spectrum to one count/sec in the V band.

model = syn.models.BlackBody1D(2500)
spec = syn.SourceSpectrum(model)
spec_norm = spec.normalize(1*u.ct, vband, area=stsyn.conf.area)

Finally, we generate a synthetic Observation, which consists of the normalized spectrum convolved with the bandpass, and print the predicted flux (in FLAM) and ABmag values for our Observation.

obs = syn.Observation(spec_norm, bp)

flux = obs.effstim(flux_unit=su.FLAM)
ab = obs.effstim(flux_unit=u.ABmag)

print('Predicted flux:  {:.4}  for Obsmode = {}'.format(flux, obsmode))
print('Predicted ABmag: {:.3f}  for Obsmode = {}'.format(ab, obsmode))
Predicted flux:  5.113e-19 FLAM  for Obsmode = wfc3, ir, f110w
Predicted ABmag: 23.010 mag(AB)  for Obsmode = wfc3, ir, f110w

Example 3: Find the photometric transformation between two bandpasses#

Find the color term for a 5,000 K blackbody between the Cousins-I and WFC3/UVIS1 F814W bandpasses in the ABmag system.

More examples may be found in the filter transformations notebook in the WFC3 Library.

First, we set up two bandpasses based on our observation modes.

obsmode1 = 'wfc3, uvis1, f814w'
obsmode2 = 'cousins, i'

bp1 = stsyn.band(obsmode1)
bp2 = stsyn.band(obsmode2)

Then, we choose a 5000 K blackbody model and fit our spectrum to the model.

model = syn.models.BlackBody1D(5000.)
spec = syn.SourceSpectrum(model)

Next, we generate two synthetic Observations, which consists of the blackbody spectrum convolved with the bandpass.

obs1 = syn.Observation(spec, bp1, binset=bp1.binset)
obs2 = syn.Observation(spec, bp2, binset=bp2.binset)

Finally, we calculate the color term by finding the difference between the two effective stimuli in ABmag.

stim1 = obs1.effstim(flux_unit=u.ABmag)
stim2 = obs2.effstim(flux_unit=u.ABmag)

color = stim2 - stim1

print('ABmag({}) - ABmag({}) = {:.4f}'.format(obsmode2, obsmode1, color))
ABmag(cousins, i) - ABmag(wfc3, uvis1, f814w) = 0.0054 mag

Example 4a: Find the UV color term across the two UVIS chips for different spectral types#

Calculate the UV color terms (in the STmag system) for a white dwarf spectrum and a G-type spectrum across the two UVIS chips with the F225W filter. Then, find the difference between these two terms to find the magnitude offset on UVIS2 for the G-type star.

This example reproduces the results from Figure 4 of WFC3 ISR 2018-08.

The spectra required to run this example, which are the latest relevant spectra from CALSPEC, are provided in the example_spectra sub-directory which was packaged with this notebook.

First, we set up two bandpasses based on our observation modes, and define our area to be the HST primary mirror area.

obsmode1 = 'wfc3, uvis1, f225w'
obsmode2 = 'wfc3, uvis2, f225w'

bp1 = stsyn.band(obsmode1)
bp2 = stsyn.band(obsmode2)

Then, we define our spectra from the provided FITS files.

spec_wd = syn.SourceSpectrum.from_file('example_spectra/gd153_stiswfcnic_003.fits') # GD153 (white dwarf)
spec_g = syn.SourceSpectrum.from_file('example_spectra/p330e_stiswfcnic_003.fits') # P330E (G-type)

Next, we generate four synthetic Observations, one for each spectrum in each bandpass. Ignore the warning messages.

obs1_wd = syn.Observation(spec_wd, bp1, binset=bp1.binset, force='extrap')
obs2_wd = syn.Observation(spec_wd, bp2, binset=bp2.binset, force='extrap')

obs1_g = syn.Observation(spec_g, bp1, binset=bp1.binset, force='extrap')
obs2_g = syn.Observation(spec_g, bp2, binset=bp1.binset, force='extrap')
WARNING: Source spectrum will be extrapolated (at constant value for empirical model). [synphot.observation]

Following this, we calculate the effective stimuli (in STmag) for these Observations, and find the difference between these values across the two chips for each spectral type.

stim1_wd = obs1_wd.effstim(flux_unit=u.STmag)
stim2_wd = obs2_wd.effstim(flux_unit=u.STmag)

stim1_g = obs1_g.effstim(flux_unit=u.STmag)
stim2_g = obs2_g.effstim(flux_unit=u.STmag)

dstim_wd = stim1_wd - stim2_wd
dstim_g = stim1_g - stim2_g

Finally, we calculate the overall cross-chip color term for the G-type star by finding its offset from the white dwarf.

print('Color Term (UVIS1 - UVIS2): {:.3f}'.format(dstim_g - dstim_wd))
Color Term (UVIS1 - UVIS2): -0.073 mag

Example 4b: Plot bandpasses and spectra#

Create a plot with the bandpasses and spectra used in Example 4a.

Note: For the purposes of these plots, the spectra will be scaled to the amplitude of the bandpasses, which reflect the actual total system throughput as a function of wavelength. You will see that the throughput is different between the two chips.

First, define a set of wavelengths and a minimum/maximum bound for our plot, based on the average wavelength and witdth of the bandpasses.

avgwave = (bp1.avgwave().to(u.nm) + bp2.avgwave().to(u.nm))/2
width = (bp1.rectwidth().to(u.nm) + bp2.rectwidth().to(u.nm))/2

left = max((avgwave - 1.5 * width).value, 1)
right = (avgwave + 1.5 * width).value

wl = np.arange(left, right) * u.nm

Next, scale the spectra to the (average) amplitude of the bandpasses.

avg_max = (np.max(bp1(wl)) + np.max(bp2(wl))) / 2
scale_wd = avg_max / np.max(spec_wd(wl))
scale_g = avg_max / np.max(spec_g(wl))

spec_wd_scale = spec_wd(wl) * scale_wd
spec_g_scale = spec_g(wl) * scale_g

Then, plot the bandpasses and spectra.

plt.figure()

plt.xlabel('Wavelength (nm)')
plt.ylabel('Throughput')

plt.plot(wl, spec_wd_scale, ls=':', c='blue', label='White dwarf spectrum')
plt.plot(wl, spec_g_scale, ls=':', c='red', label='G-type spectrum')
plt.plot(wl, bp1(wl), ls='-', c='orange', label='UVIS 1 bandpass')
plt.plot(wl, bp2(wl), ls='-', c='purple', label='UVIS 2 bandpass')

plt.legend(fontsize='small')

plt.show()
../../../_images/49d7a1606d89056c5714f1c9bcd6bc704862102856332e016fd5be2f86eb2be8.png

4. Conclusions#

Thank you for walking through this notebook. Now using WFC3 data, you should be more familiar with:

  • Specify WFC3 bandpasses in stsynphot and define spectra with synphot.

  • Computing WFC3 zeropoint values and an encircled energy correction.

  • Renormalizing a spectrum and predict its effective stimulus in another filter.

  • Finding the photometric transformation between two bandpasses.

  • Finding the UV color term across the two UVIS chips for different spectral types.

  • Plotting bandpasses and spectra.

Congratulations, you have completed the notebook!#

Additional Resources#

Below are some additional resources that may be helpful. Please send any questions through the HST Helpdesk.

About this Notebook#

Authors: Aidan Pidgeon, Jennifer Mack; WFC3 Instrument Team

Updated on: 2021-09-14

Citations#

If you use numpy, astropy, synphot, or stsynphot for published research, please cite the authors. Follow these links for more information about citing the libraries below:


Top of Page Space Telescope Logo