Processing WFC3/UVIS Data with calwf3
Using the v1.0 CTE-Correction#
Learning Goals#
This notebook explains how to calibrate raw
WFC3/UVIS data with the v1.0 pixel-based CTE correction within calwf3
.
By the end of this tutorial, you will:
Download a raw WFC3 image from MAST.
Find the necessary reference files needed for calibration.
Edit header keywords.
Run
calwf3
v3.5.2
to calibrate the raw image with the v1.0 pixel based CTE-correction.Compare v1.0 and v2.0 products.
Table of Contents#
Introduction
1. Imports
2. Verify archived_drkcfiles.txt
is in CWD
3. Check that calwf3
Version is v3.5.2
4. Query MAST and Download a WFC3 raw.fits
Image
5. Set CRDS Environment Variable and Download Reference Files
5.1 Run crds bestrefs
5.2 Inspect Image Header
6. Find the Correct v1.0 DRKCFILE
6.1 Download the Correct DRKCFILE from CRDS
6.2 Modify the Image Header Keyword, DRKCFILE
7. Download the v1.0 PCTETAB
7.1 Modify the Image Header Keyword PCTETAB
8. Re-Inspect Image Header
9. Run calwf3
10. Inspect FLC
Image Header
11. Investigate v1.0 and v2.0 Differences
11.1 Download the v2.0 FLC File
11.2 Open Files
11.3 Display 50x50 Pixel Background Subsection
11.3.1 Pixel Distribution of Background Subsections
11.4 Display Image Subsection
11.5 Aperture Photometry
12. Conclusions
Additional Resources
About the Notebook
Citations
Introduction#
The v1.0 pixel-based Charge Transfer Efficiency (CTE) correction was first implemented into calwf3
v3.3
in 2016
(Ryan et al. 2016, Anderson & Bedin 2010, HSTCAL release notes). This also marked the first time users could directly
download CTE-corrected flc & drc
files from MAST. While the v1.0 correction was sufficient for many years, the
degradation of CTE over time reduced the efficacy of the model in treating low-level pixels. The v1.0 correction adversely
impacts (overcorrects) both the image background and faint sources. In April 2021 the v2.0 pixel-based CTE correction
was implemented in calwf3
v3.6.0
(Anderson et al. 2021, Kuhn & Anderson 2021, HSTCAL release notes). Since
MAST uses the latest release of calwf3
for calibration, any WFC3/UVIS CTE corrected data retrieved from MAST,
regardless of observation date, will be calibrated with the v2.0 pixel-based CTE correction. Although v1.0 pixel-based
CTE-corrected flc & drc
files are no longer accessable through MAST, this notebook steps through the procedure
required to calibrate WFC3/UVIS images using the v1.0 CTE correction.
One of the limiting factors of using the v1.0 CTE correction are the CTE corrected dark current reference files (DRKCFILE
).
These dark reference files are delivered to MAST by the WFC3 team and use the same pixel-based CTE correction within
calwf3
. Now that we have switched to the v2.0 CTE correction there is a cut off for dark current reference files that use
the v1.0 correction. Observations taken after February 2021 will not have CTE corrected dark files using the v1.0 algorithm,
which means applying the v1.0 CTE correction works best for observations taken between May 2009 - February 2021.
If the observation being calibrated was taken after February 2021 there are two options: 1) use the last v1.0 CTE corrected
dark reference file from February 2021 or 2) use the v2.0 CTE corrected dark with the most appropriate USEAFTER
for the
science exposure’s observation date.
1. Imports#
We import:
Package Name |
Purpose |
---|---|
|
creating list of files |
|
directory maintenance and setting environment variables |
|
opening and modifying fits files |
|
downloading data from MAST |
|
creating and manipulating data tables |
|
finding z-scale limits when displaying images |
|
plotting and displaying images |
|
finding indices and concatenating arrays |
|
performing aperture photometry |
|
creating circular apertures |
|
creating circular annuli |
|
verifying the version and running pipeline |
|
measuring background values within annuli |
import glob
import os
from astropy.io import fits
from astropy.table import Table
from astroquery.mast import Observations
from astropy.visualization import ZScaleInterval
import matplotlib.pyplot as plt
import numpy as np
from photutils.aperture import aperture_photometry, CircularAperture, CircularAnnulus
from wfc3tools import calwf3
from example.background_median import aperture_stats_tbl
2. Verify archived_drkcfiles.txt
is in CWD#
When you cloned/downloaded this notebook from hst_notebooks, a .txt file should have been included. The file name is
archived_drkcfiles.txt
and it is used later on in the notebook. This .txt file includes the file name, delivery date, activation
date, and USEAFTER date for every v1.0 CTE corrected dark reference file between May 2009 - February 2021. Below, we will use
this file in conjunction with the observation date of the file(s) being calibrated to pick out the most appropriate v1.0 CTE corrected
dark reference file(s).
Please make sure the archived_drkcfiles.txt
file is in the current working directory before continuing.
# list cwd to verify txt file is there
!ls -l archived_drkcfiles.txt
-rw-r--r-- 1 runner docker 350644 Dec 31 16:47 archived_drkcfiles.txt
3. Check that calwf3
Version is v3.5.2
#
In April 2021, a new calwf3
version was released that contains the v2.0 CTE-correction.
If you would like to use the v1.0 correction, your
current environment must be using calwf3
versions equal to or between 3.3
- 3.5.2
. However, in order to get the best v1.0 calibrated
images we must use calwf3
v3.5.2
. This version of calwf3
includes the recent (~Jan 2021) update that added MJD as a parameterized
variable for the PHOTMODE
keyword, which enables a time-dependent photometric correction and zeropoint. If your version is 3.6.0
or higher,
you must downgrade the hstcal
package. The safer option, however, is to create a new environment using the requirements file provided in
the notebook’s repository:
$ conda config --add channels http://ssb.stsci.edu/astroconda
$ conda create -n v1_PCTE hstcal==2.5.0 python=3.11
$ conda activate v1_PCTE
$ pip install -r requirements.txt
hstcal
v2.5.0
provides version 3.5.2
of calwf3
, which is the last version that offers the v1.0 pixel-based CTE correction.
# print calwf3 version to make sure its equal to or between 3.3 and 3.5.2
!calwf3.e --version
3.7.2
4. Query MAST and Download a WFC3 raw.fits
Image#
Here, we download our image via astroquery
. For more information, please look at the documentation for Astroquery,
Astroquery.mast, and
CAOM Field Descriptions, which is used for the obs_table
variable below. Additionally, you may download the data from MAST using either
the HST MAST Search Engine or the more general MAST Portal.
We download a raw
image of star cluster 47 Tucanae (47Tuc, NGC 104), offset from the core, from CAL proposal 15576 (July 2019).
After downloading the image, we move it to the current working directory (cwd).
# Edit this cell's first line if you would to download your own file(s)
# Get the observation records
obs_table = Observations.query_criteria(obs_id='idv404axq*', proposal_id=15576)
# Get the listing of data products
products = Observations.get_product_list(obs_table)
# Filter the products for the RAW files
filtered_products = Observations.filter_products(products, productSubGroupDescription='RAW')
# Download all the images above
download_table = Observations.download_products(filtered_products, mrp_only=False)
# For convenience move raws to cwd and remove empty download dir
for file in download_table['Local Path']:
filename = file.split('/')[-1]
os.rename(file, os.path.basename(file))
os.rmdir('mastDownload/HST/'+filename[:9])
os.rmdir('mastDownload/HST/')
os.rmdir('mastDownload/')
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/idv404axq_raw.fits to ./mastDownload/HST/idv404axq/idv404axq_raw.fits ...
[Done]
# show list of current dir to verify fits file is there
!ls -l *raw.fits
-rw-r--r-- 1 runner docker 34891200 Dec 31 16:48 idv404axq_raw.fits
5. Set CRDS Environment Variable and Download Reference Files#
Before we run crds bestfefs
and calwf3
, we need to set environment variables for several subsequent calibration tasks. We will point to a
subdirectory within the main crds_cache/
using the IREF
environment variable. The IREF
variable is used for WFC3 reference files. Other
instruments use other variables, e.g., JREF
for ACS. You have the option to permanently add these environment variables to your user profile by
adding the path in your shell’s configuration file. If you’re using bash, you would edit the ~/.bash_profile
file with lines such as:
export CRDS_SERVER_URL="https://hst-crds.stsci.edu"
export CRDS_SERVER="https://hst-crds.stsci.edu"
export CRDS_PATH="$HOME/crds_cache"
export iref="${CRDS_PATH}/references/hst/wfc3/"
os.environ['CRDS_SERVER_URL'] = 'https://hst-crds.stsci.edu'
os.environ['CRDS_SERVER'] = 'https://hst-crds.stsci.edu'
os.environ['CRDS_PATH'] = 'crds_cache'
os.environ['iref'] = 'crds_cache/references/hst/wfc3/'
5.1 Run crds bestrefs
#
The cell below calls CRDS bestref, which will copy the necessary reference files from CRDS over to your local machine, if you do not already have
them. Without running this command we would not be able to calibrate the image with calwf3
.
!crds bestrefs --update-bestrefs --sync-references=1 --files idv404axq_raw.fits
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_wf4tfile_0250.rmap 678 bytes (1 / 142 files) (0 / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_shadfile_0250.rmap 977 bytes (2 / 142 files) (678 / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_offtab_0250.rmap 642 bytes (3 / 142 files) (1.7 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_maskfile_0250.rmap 685 bytes (4 / 142 files) (2.3 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_idctab_0250.rmap 696 bytes (5 / 142 files) (3.0 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_flatfile_0250.rmap 30.0 K bytes (6 / 142 files) (3.7 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_dgeofile_0250.rmap 801 bytes (7 / 142 files) (33.7 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_darkfile_0250.rmap 178.4 K bytes (8 / 142 files) (34.5 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_biasfile_0250.rmap 3.3 K bytes (9 / 142 files) (212.8 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_atodfile_0250.rmap 874 bytes (10 / 142 files) (216.1 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfpc2_0250.imap 782 bytes (11 / 142 files) (217.0 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_snkcfile_0003.rmap 681 bytes (12 / 142 files) (217.8 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_satufile_0002.rmap 1.0 K bytes (13 / 142 files) (218.5 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_pfltfile_0253.rmap 34.2 K bytes (14 / 142 files) (219.5 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_pctetab_0004.rmap 698 bytes (15 / 142 files) (253.7 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_oscntab_0250.rmap 747 bytes (16 / 142 files) (254.4 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_npolfile_0254.rmap 4.0 K bytes (17 / 142 files) (255.1 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_nlinfile_0250.rmap 726 bytes (18 / 142 files) (259.2 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_mdriztab_0254.rmap 845 bytes (19 / 142 files) (259.9 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_imphttab_0257.rmap 683 bytes (20 / 142 files) (260.7 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_idctab_0254.rmap 661 bytes (21 / 142 files) (261.4 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_flshfile_0256.rmap 5.8 K bytes (22 / 142 files) (262.1 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_drkcfile_0198.rmap 240.0 K bytes (23 / 142 files) (267.9 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_dfltfile_0002.rmap 17.1 K bytes (24 / 142 files) (507.8 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_darkfile_0497.rmap 287.3 K bytes (25 / 142 files) (524.9 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_d2imfile_0251.rmap 605 bytes (26 / 142 files) (812.2 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_crrejtab_0250.rmap 803 bytes (27 / 142 files) (812.9 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_ccdtab_0250.rmap 799 bytes (28 / 142 files) (813.7 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_bpixtab_0314.rmap 11.9 K bytes (29 / 142 files) (814.5 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_biasfile_0267.rmap 23.4 K bytes (30 / 142 files) (826.4 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_biacfile_0003.rmap 692 bytes (31 / 142 files) (849.8 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_atodtab_0250.rmap 651 bytes (32 / 142 files) (850.4 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_wfc3_0605.imap 1.3 K bytes (33 / 142 files) (851.1 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_synphot_tmttab_0002.rmap 745 bytes (34 / 142 files) (852.4 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_synphot_tmgtab_0012.rmap 767 bytes (35 / 142 files) (853.1 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_synphot_tmctab_0055.rmap 743 bytes (36 / 142 files) (853.9 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_synphot_thruput_0059.rmap 329.6 K bytes (37 / 142 files) (854.6 K / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_synphot_thermal_0003.rmap 20.4 K bytes (38 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_synphot_obsmodes_0004.rmap 743 bytes (39 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_synphot_0070.imap 579 bytes (40 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_xtractab_0250.rmap 815 bytes (41 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_wcptab_0251.rmap 578 bytes (42 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_teltab_0250.rmap 745 bytes (43 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_tdstab_0254.rmap 921 bytes (44 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_tdctab_0252.rmap 650 bytes (45 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_srwtab_0250.rmap 745 bytes (46 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_sptrctab_0251.rmap 895 bytes (47 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_sdctab_0251.rmap 889 bytes (48 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_riptab_0254.rmap 877 bytes (49 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_phottab_0258.rmap 1.6 K bytes (50 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_pfltfile_0250.rmap 23.7 K bytes (51 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_pctab_0250.rmap 3.1 K bytes (52 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_mofftab_0250.rmap 747 bytes (53 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_mlintab_0250.rmap 601 bytes (54 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_lfltfile_0250.rmap 11.8 K bytes (55 / 142 files) (1.2 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_lamptab_0250.rmap 610 bytes (56 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_inangtab_0250.rmap 815 bytes (57 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_imphttab_0252.rmap 616 bytes (58 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_idctab_0251.rmap 775 bytes (59 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_halotab_0250.rmap 747 bytes (60 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_gactab_0250.rmap 651 bytes (61 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_exstab_0250.rmap 745 bytes (62 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_echsctab_0250.rmap 749 bytes (63 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_disptab_0250.rmap 813 bytes (64 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_darkfile_0357.rmap 60.6 K bytes (65 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_crrejtab_0250.rmap 711 bytes (66 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_cdstab_0250.rmap 745 bytes (67 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_ccdtab_0252.rmap 893 bytes (68 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_bpixtab_0250.rmap 845 bytes (69 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_biasfile_0359.rmap 120.9 K bytes (70 / 142 files) (1.3 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_apertab_0250.rmap 588 bytes (71 / 142 files) (1.4 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_apdestab_0252.rmap 636 bytes (72 / 142 files) (1.4 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_stis_0373.imap 1.7 K bytes (73 / 142 files) (1.4 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_zprattab_0250.rmap 646 bytes (74 / 142 files) (1.4 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_tempfile_0250.rmap 1.1 K bytes (75 / 142 files) (1.4 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_tdffile_0250.rmap 8.9 K bytes (76 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_saadfile_0250.rmap 771 bytes (77 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_saacntab_0250.rmap 594 bytes (78 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_rnlcortb_0250.rmap 771 bytes (79 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_pmskfile_0250.rmap 603 bytes (80 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_pmodfile_0250.rmap 603 bytes (81 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_phottab_0250.rmap 862 bytes (82 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_pedsbtab_0250.rmap 594 bytes (83 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_noisfile_0250.rmap 2.6 K bytes (84 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_nlinfile_0250.rmap 1.7 K bytes (85 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_maskfile_0250.rmap 1.2 K bytes (86 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_illmfile_0250.rmap 5.8 K bytes (87 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_idctab_0250.rmap 767 bytes (88 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_flatfile_0250.rmap 11.0 K bytes (89 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_darkfile_0250.rmap 14.9 K bytes (90 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_nicmos_0250.imap 1.1 K bytes (91 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_ywlkfile_0003.rmap 922 bytes (92 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_xwlkfile_0002.rmap 922 bytes (93 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_xtractab_0269.rmap 1.6 K bytes (94 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_wcptab_0257.rmap 1.3 K bytes (95 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_twozxtab_0277.rmap 990 bytes (96 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_tracetab_0276.rmap 998 bytes (97 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_tdstab_0272.rmap 803 bytes (98 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_spwcstab_0255.rmap 1.1 K bytes (99 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_spottab_0006.rmap 766 bytes (100 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_proftab_0276.rmap 1.0 K bytes (101 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_phatab_0250.rmap 668 bytes (102 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_lamptab_0264.rmap 1.4 K bytes (103 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_hvtab_0259.rmap 567 bytes (104 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_hvdstab_0002.rmap 1.0 K bytes (105 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_gsagtab_0261.rmap 712 bytes (106 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_geofile_0250.rmap 670 bytes (107 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_fluxtab_0282.rmap 1.7 K bytes (108 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_flatfile_0264.rmap 1.8 K bytes (109 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_disptab_0276.rmap 1.7 K bytes (110 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_dgeofile_0002.rmap 909 bytes (111 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_deadtab_0250.rmap 711 bytes (112 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_brsttab_0250.rmap 696 bytes (113 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_brftab_0250.rmap 614 bytes (114 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_bpixtab_0260.rmap 773 bytes (115 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_badttab_0252.rmap 643 bytes (116 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_cos_0359.imap 1.4 K bytes (117 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_spottab_0251.rmap 641 bytes (118 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_snkcfile_0101.rmap 7.5 K bytes (119 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_shadfile_0251.rmap 531 bytes (120 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_satufile_0002.rmap 1.2 K bytes (121 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_pfltfile_0253.rmap 69.2 K bytes (122 / 142 files) (1.5 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_pctetab_0254.rmap 615 bytes (123 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_oscntab_0251.rmap 781 bytes (124 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_npolfile_0253.rmap 3.2 K bytes (125 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_mlintab_0250.rmap 646 bytes (126 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_mdriztab_0253.rmap 769 bytes (127 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_imphttab_0260.rmap 769 bytes (128 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_idctab_0256.rmap 1.5 K bytes (129 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_flshfile_0268.rmap 3.4 K bytes (130 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_drkcfile_0452.rmap 15.1 K bytes (131 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_dgeofile_0250.rmap 3.2 K bytes (132 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_darkfile_0443.rmap 87.0 K bytes (133 / 142 files) (1.6 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_d2imfile_0253.rmap 601 bytes (134 / 142 files) (1.7 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_crrejtab_0251.rmap 945 bytes (135 / 142 files) (1.7 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_cfltfile_0250.rmap 1.2 K bytes (136 / 142 files) (1.7 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_ccdtab_0256.rmap 1.4 K bytes (137 / 142 files) (1.7 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_bpixtab_0253.rmap 1.1 K bytes (138 / 142 files) (1.7 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_biasfile_0441.rmap 57.1 K bytes (139 / 142 files) (1.7 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_atodtab_0251.rmap 528 bytes (140 / 142 files) (1.8 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_acs_0544.imap 1.3 K bytes (141 / 142 files) (1.8 M / 1.8 M bytes)
CRDS - INFO - Fetching crds_cache/mappings/hst/hst_1202.pmap 495 bytes (142 / 142 files) (1.8 M / 1.8 M bytes)
CRDS - INFO - No comparison context or source comparison requested.
CRDS - INFO - ===> Processing idv404axq_raw.fits
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/2731450pi_idc.fits 40.3 K bytes (1 / 18 files) (0 / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/27d1518pi_npl.fits 49.0 K bytes (2 / 18 files) (40.3 K / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/2ck18260i_mdz.fits 118.1 K bytes (3 / 18 files) (89.3 K / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/3a32019bi_bpx.fits 1.7 M bytes (4 / 18 files) (207.4 K / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/42h2117di_bia.fits 174.2 M bytes (5 / 18 files) (1.9 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/51c1638pi_imp.fits 397.4 K bytes (6 / 18 files) (176.1 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/54l1347ei_cte.fits 1.2 M bytes (7 / 18 files) (176.5 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/6c82013hi_fls.fits 209.0 M bytes (8 / 18 files) (177.6 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/7b21735ti_sat.fits 174.2 M bytes (9 / 18 files) (386.6 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/7bg1930ki_dkc.fits 168.1 M bytes (10 / 18 files) (560.8 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/7bg1956fi_drk.fits 168.1 M bytes (11 / 18 files) (728.9 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/n9i1435li_crr.fits 11.5 K bytes (12 / 18 files) (897.0 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/q911321oi_osc.fits 25.9 K bytes (13 / 18 files) (897.0 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/t291659mi_ccd.fits 247.7 K bytes (14 / 18 files) (897.0 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/y7b1516hi_d2i.fits 51.8 K bytes (15 / 18 files) (897.3 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/zcv20544i_pfl.fits 168.1 M bytes (16 / 18 files) (897.3 M / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/zcv2057ni_bic.fits 174.2 M bytes (17 / 18 files) (1.1 G / 1.3 G bytes)
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/zcv2057oi_snk.fits 69.7 M bytes (18 / 18 files) (1.2 G / 1.3 G bytes)
CRDS - INFO - 0 errors
CRDS - INFO - 0 warnings
CRDS - INFO - 162 infos
5.2 Inspect Image Header#
When processing a raw file through calwf3
, the pipeline uses a few different header keywords to initiate and run the pixel-based CTE
correction. Here, we inspect the important header keywords from the raw file just downloaded.
At this step, you should see:
pctetab
set toiref$54l1347ei_cte.fits
drkcfile
set toiref$54n2022fi_dkc.fits
pctecorr
set toPERFORM
.
# Collect header keyword info from raw file
file, date, expstart, pctetab, drkcfile, pctecorr = [], [], [], [], [], []
for f in glob.glob('*raw.fits'):
h = fits.getheader(f)
file.append(h['filename'])
date.append(h['date-obs'])
expstart.append(h['expstart'])
pctetab.append(h['pctetab'])
drkcfile.append(h['drkcfile'])
pctecorr.append(h['pctecorr'])
image_table = Table([file, date, expstart, pctetab, drkcfile, pctecorr],
names=('file', 'date-obs', 'expstart', 'pctetab', 'drkcfile', 'pctecorr'))
image_table['expstart'].format = '5.6f'
# Sort and display the table
image_table.sort('expstart')
image_table
file | date-obs | expstart | pctetab | drkcfile | pctecorr |
---|---|---|---|---|---|
str18 | str10 | float64 | str23 | str23 | str7 |
idv404axq_raw.fits | 2019-07-29 | 58693.181643 | iref$54l1347ei_cte.fits | iref$7bg1930ki_dkc.fits | PERFORM |
6. Find the Correct v1.0 DRKCFILE
#
Below, we open the .txt file containing a list of all the DRKCFILE
reference files created with the v1.0 pixel-based CTE correction. DRKCFILE
reference files are CTE corrected files used by the pipeline to perform the dark current subtraction during the generation
of the flc
file. The DRKCFILE
files listed in archived_drkcfiles.txt
have been archived on the CRDS database and while
they are still accessible for use and download, they are not being actively used by MAST.
In the first cell, we generate an astropy.Table
( drkc_table
) using the data from the file archived_drkcfiles.txt
, mentioned
in Section 2, and create empty lists for the final table. Then, in the second cell, we index the drkc_table
table for the best DRKCFILE
that corresponds to the DATE-OBS
of the raw
file being calibrated. Lastly, in the third cell, we create and display the final astropy.table
that contains just the necessary DRKCFILE
.
# Generate astropy table from `archived_drkcfiles.txt`
drkc_table = Table.read('archived_drkcfiles.txt', format='ascii.commented_header')
# Create empty lists for final astropy table
rawfiles, obsdates, dkcfiles, uafters, active_dates = [], [], [], [], []
# Using image header table from section 4.1 find closest drkcfile
for expstart in image_table['expstart']:
table_idx = np.where(abs(drkc_table['useafter-mjd']-expstart) == abs(drkc_table['useafter-mjd']-expstart).min())[0][0]
rawfile = image_table[image_table['expstart'] == expstart]['file'][0]
# if drkcfile has useafter date > rawfile expstart use previous drkcfile
if drkc_table[table_idx]['useafter-mjd'] > image_table[image_table['file'] == rawfile]['expstart'][0]:
table_idx -= 1
# append info
rawfiles.append(rawfile)
obsdates.append(image_table[image_table['file'] == rawfile]['date-obs'][0])
dkcfiles.append(drkc_table[table_idx]['drkcfile'])
uafters.append(drkc_table[table_idx]['useafter'])
active_dates.append(drkc_table[table_idx]['activation-date'])
# Generate table of filename, date-obs, drkc-filename, corresponding useafter
raw_dkc_tab = Table([rawfiles, obsdates, dkcfiles, uafters, active_dates],
names=('filename', 'date-obs', 'dkc-filename', 'dkc-useafter', 'dkc-activation'))
# Display table
raw_dkc_tab
filename | date-obs | dkc-filename | dkc-useafter | dkc-activation |
---|---|---|---|---|
str18 | str10 | str18 | str10 | str10 |
idv404axq_raw.fits | 2019-07-29 | 3961719li_dkc.fits | 2019-07-28 | 2019-09-09 |
6.1 Download the Correct DRKCFILE
from CRDS#
Now that we know the name of the correct DRKCFILE
, it must be retrieved from CRDS and stored on your local machine so that it can be used
during calibration. To copy the file from CRDS we use the crds sync command.
for dkc in raw_dkc_tab['dkc-filename']:
crds_sync = f"crds sync --hst --files {dkc} --output-dir {os.environ['iref']} "
run_sync = os.system(crds_sync)
if run_sync != 0:
print(f"crds sync failed with exit code: {run_sync}")
CRDS - INFO - Symbolic context 'hst-latest' resolves to 'hst_1202.pmap'
CRDS - INFO - Reorganizing 0 references from 'instrument' to 'flat'
CRDS - INFO - Reorganizing from 'instrument' to 'flat' cache, removing instrument directories.
CRDS - INFO - Syncing explicitly listed files.
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/3961719li_dkc.fits 168.1 M bytes (1 / 1 files) (0 / 168.1 M bytes)
CRDS - INFO - 0 errors
CRDS - INFO - 0 warnings
CRDS - INFO - 5 infos
6.2 Modify the Image Header Keyword, DRKCFILE
#
With the v1.0 CTE-corrected dark current reference file that corresponds to our raw
science file copied to our local machine, we’re ready to
edit the header keyword with the proper DRKCFILE
.
for file in glob.glob('i*raw.fits'):
# Using raw_dkc_tab from above, grab appropriate drkcfile
ctecorr_dark = 'iref$'+raw_dkc_tab[raw_dkc_tab['filename'] == file]['dkc-filename'][0]
fits.setval(file, 'DRKCFILE', value=ctecorr_dark)
7. Download the v1.0 PCTETAB
#
The next reference file we’re going to download from CRDS is the PCTETAB
. This is the pixel-based correction reference table and without it
the algorithm will not work. In order to use the v1.0 pixel based correction, we must retrieve the v1.0 PCTETAB
and set the header keyword to
the proper reference file. In the cells below, we use the crds sync
command again and then set the raw
file’s PCTETAB
to the v1.0
reference table, zcv2057mi_cte.fits.
crds_sync = f"crds sync --hst --files zcv2057mi_cte.fits --output-dir {os.environ['iref']}"
run_sync = os.system(crds_sync)
if run_sync != 0:
print(f"crds sync failed: {run_sync}")
CRDS - INFO - Symbolic context 'hst-latest' resolves to 'hst_1202.pmap'
CRDS - INFO - Reorganizing 26 references from 'flat' to 'flat'
CRDS - INFO - Syncing explicitly listed files.
CRDS - INFO - Fetching crds_cache/references/hst/wfc3/zcv2057mi_cte.fits 1.2 M bytes (1 / 1 files) (0 / 1.2 M bytes)
CRDS - INFO - 0 errors
CRDS - INFO - 0 warnings
CRDS - INFO - 4 infos
7.1 Modify the Image Header Keyword, PCTETAB
#
fits.setval('idv404axq_raw.fits', 'PCTETAB', value='iref$zcv2057mi_cte.fits')
8. Re-Inspect Image Header#
Now with the headers modified, we inspect the keywords one last time to verify the file was updated properly before we process
it through calwf3
. At this point you should see:
PCTETAB
set toiref$zcv2057mi_cte.fits
DRKCFILE
set toiref$3961719li_dkc.fits
# Recollect and display header keywords
file, date, expstart, pctetab, drkcfile, pctecorr = [], [], [], [], [], []
for f in glob.glob('*raw.fits'):
h = fits.getheader(f)
file.append(h['filename'])
date.append(h['date-obs'])
expstart.append(h['expstart'])
pctetab.append(h['pctetab'])
drkcfile.append(h['drkcfile'])
pctecorr.append(h['pctecorr'])
updated_table = Table([file, date, expstart, pctetab, drkcfile, pctecorr],
names=('file', 'date-obs', 'expstart', 'pctetab', 'drkcfile', 'pctecorr'))
updated_table['expstart'].format = '5.6f'
# Sort and display the table
updated_table.sort('expstart')
updated_table
file | date-obs | expstart | pctetab | drkcfile | pctecorr |
---|---|---|---|---|---|
str18 | str10 | float64 | str23 | str23 | str7 |
idv404axq_raw.fits | 2019-07-29 | 58693.181643 | iref$zcv2057mi_cte.fits | iref$3961719li_dkc.fits | PERFORM |
9. Run calwf3
#
As a reminder, the calwf3
version must be 3.5.2
to use the v1.0 pixel-base CTE correction with the most up-to-date calibration parameters.
If you are not using version 3.5.2
the below calwf3
call will crash due to an out-of-date IMPHTTAB
reference file.
if not os.path.exists('idv404axq_flt.fits'):
calwf3('idv404axq_raw.fits')
git tag: ee6a390a-dirty
git branch: HEAD
HEAD @: ee6a390a7edc9597074d481a57a6d2926d1cc1c4
CALBEG*** CALWF3 -- Version 3.7.2 (Apr-15-2024) ***
Begin 31-Dec-2024 16:49:54 UTC
Input idv404axq_raw.fits
loading asn
LoadAsn: Processing SINGLE exposure
Trying to open idv404axq_raw.fits...
Read in Primary header from idv404axq_raw.fits...
Using parallel processing provided by OpenMP inside CTE routine
Setting max threads to 4 of 4 cpus
CALBEG*** WFC3CTE -- Version 3.7.2 (Apr-15-2024) ***
Begin 31-Dec-2024 16:49:54 UTC
Input idv404axq_raw.fits
Output idv404axq_rac_tmp.fits
Creating new trailer file `idv404axq.tra'.
Trying to open idv404axq_raw.fits...
Read in Primary header from idv404axq_raw.fits...
Trying to open iref$zcv2057mi_cte.fits...
Read in Primary header from iref$zcv2057mi_cte.fits...
CTE_NAME: pixelCTE 2012
CTE_VER: 1.0
CTEDATE0: 54962
CTEDATE1: 56173
PCTETLEN: 60
PCTERNFOR: 5
PCTERNPAR: 7
PCTENSMD: 0
PCTETRSH: -10
Reading in image from extension 3
Reading in image from extension 4
CTE: Subtracting BIACFILE: iref$zcv2057ni_bic.fits for imset 1
CTE: Subtracting BIACFILE: iref$zcv2057ni_bic.fits for imset 2
CTE_FF: 3.081
PCTERNOI: 0.0000 (source: primary header of science image)
RNOIVAL: 6.0121 BKGDVAL: 20.3068
PCTERNOI: 6.0121 (source: computed on-the-fly from science image)
This computed value supersedes any value obtained from the primary
header of the science image.
CTE: jumping into the routine...
INSIDE sub_ctecor_v2.f...
---> PCTERNOI: 6.0121
---> FIX_ROCR: -10.0000
---> NITFORs: 5
---> NITPARs: 7
CTE: returning from the routine...
PCTEFRAC saved to header
PCTERNOI saved to header
PCTECORR COMPLETE
CALBEG*** WF3CCD -- Version 3.7.2 (Apr-15-2024) ***
Begin 31-Dec-2024 16:55:25 UTC
Input: idv404axq_rac_tmp.fits
Output: idv404axq_blc_tmp.fits
Trying to open idv404axq_rac_tmp.fits...
Read in Primary header from idv404axq_rac_tmp.fits...
APERTURE UVIS
FILTER F502N
DETECTOR UVIS
Imset 1 Begin 16:55:25 UTC
CCDTAB iref$t291659mi_ccd.fits
CCDTAB PEDIGREE=GROUND
CCDTAB DESCRIP =UVIS-1 CCD characteristics from TV3 data
CCDTAB DESCRIP =From TV3 data
Uncertainty array initialized,
readnoise =3.03,3.13,3.08,3.18
gain =1.56,1.56,1.56,1.56
default bias levels = 2556.4,2543.8,2503.3,2605.7
DQICORR PERFORM
DQITAB iref$3a32019bi_bpx.fits
DQITAB PEDIGREE=INFLIGHT 23/06/2009 15/10/2009
DQITAB DESCRIP =Based on SMOV and Cycle 17 data.-----------------------------------
Amp: ABCD chip: 2 ccdamp: CD
Number of amps 2
DQICORR COMPLETE
ATODCORR OMIT
BLEVCORR PERFORM
OSCNTAB iref$q911321oi_osc.fits
OSCNTAB PEDIGREE=GROUND
OSCNTAB DESCRIP =WFC3 normal overscan CCD data compatible
(blevcorr) Rejected 132 bias values from parallel fit.
Computed a parallel fit with slope of -0.000199413
(blevcorr) Rejected 1 bias values from serial fit.
Computed a serial fit with slope of 4.68593e-05 and intercept of 2501.47
(blevcorr) Rejected 149 bias values from parallel fit.
Computed a parallel fit with slope of 0.000126276
(blevcorr) Rejected 3 bias values from serial fit.
Computed a serial fit with slope of -1.40576e-05 and intercept of 2602.82
Bias level from overscan has been subtracted;
mean of bias levels subtracted was 2552.18.
bias level of 2501.68 was subtracted for AMP C.
bias level of 2602.68 was subtracted for AMP D.
BLEVCORR COMPLETE
BIASCORR PERFORM
BIASFILE iref$42h2117di_bia.fits
BIASFILE PEDIGREE=INFLIGHT 2019-01-01 2019-12-31
BIASFILE DESCRIP =2019 Superbias intended for use with WFC3/UVIS non-subarray data
BIASCORR COMPLETE
SATUFILE iref$7b21735ti_sat.fits
SATUFILE PEDIGREE=GROUND
SATUFILE DESCRIP =Saturation level map for full-frame unbinned and subarray &
Full-well saturation flagging being performed.
Image has starting location of 0,0 in the reference image
Saturation image and input are the same size.
Amp: ABCD chip: 2 ccdamp: CD
Number of amps 2
Full-frame full-well saturation image flagging step done.
Performing SINK pixel detection for imset 1
Sink pixel flagging complete
FLSHCORR PERFORM
FLSHFILE iref$6c82013hi_fls.fits
FLSHFILE PEDIGREE=INFLIGHT 27/08/2012 07/12/2022
FLSHFILE DESCRIP =Post-flash created from in-flight WFC3/UVIS frames.----------------
Mean of post-flash image (MEANFLSH) = 12.0681
FLSHCORR COMPLETE
Imset 1 End 16:55:26 UTC
Imset 2 Begin 16:55:26 UTC
CCDTAB iref$t291659mi_ccd.fits
CCDTAB PEDIGREE=GROUND
CCDTAB DESCRIP =UVIS-1 CCD characteristics from TV3 data
CCDTAB DESCRIP =From TV3 data
Uncertainty array initialized,
readnoise =3.03,3.13,3.08,3.18
gain =1.56,1.56,1.56,1.56
default bias levels = 2556.4,2543.8,2503.3,2605.7
DQICORR PERFORM
Amp: ABCD chip: 1 ccdamp: AB
Number of amps 2
DQICORR COMPLETE
ATODCORR OMIT
BLEVCORR PERFORM
(blevcorr) Rejected 162 bias values from parallel fit.
Computed a parallel fit with slope of -7.74594e-05
(blevcorr) Rejected 0 bias values from serial fit.
Computed a serial fit with slope of 2.42297e-05 and intercept of 2554.35
(blevcorr) Rejected 165 bias values from parallel fit.
Computed a parallel fit with slope of -1.0644e-05
(blevcorr) Rejected 0 bias values from serial fit.
Computed a serial fit with slope of 3.90277e-05 and intercept of 2541.86
Bias level from overscan has been subtracted;
mean of bias levels subtracted was 2548.15.
bias level of 2554.43 was subtracted for AMP A.
bias level of 2541.87 was subtracted for AMP B.
bias level of 2501.68 was subtracted for AMP C.
bias level of 2602.68 was subtracted for AMP D.
BLEVCORR COMPLETE
BIASCORR PERFORM
BIASCORR COMPLETE
Full-well saturation flagging being performed.
Image has starting location of 0,0 in the reference image
Saturation image and input are the same size.
Amp: ABCD chip: 1 ccdamp: AB
Number of amps 2
Full-frame full-well saturation image flagging step done.
Performing SINK pixel detection for imset 2
Sink pixel flagging complete
FLSHCORR PERFORM
Mean of post-flash image (MEANFLSH) = 12.0962
FLSHCORR COMPLETE
Imset 2 End 16:55:27 UTC
Setting Bias Keywords in header
End 31-Dec-2024 16:55:27 UTC
*** WF3CCD complete ***
CALBEG*** WF3CCD -- Version 3.7.2 (Apr-15-2024) ***
Begin 31-Dec-2024 16:55:27 UTC
Revising existing trailer file `idv404axq.tra'.
Input: idv404axq_raw.fits
Output: idv404axq_blv_tmp.fits
Trying to open idv404axq_raw.fits...
Read in Primary header from idv404axq_raw.fits...
APERTURE UVIS
FILTER F502N
DETECTOR UVIS
Imset 1 Begin 16:55:27 UTC
CCDTAB iref$t291659mi_ccd.fits
CCDTAB PEDIGREE=GROUND
CCDTAB DESCRIP =UVIS-1 CCD characteristics from TV3 data
CCDTAB DESCRIP =From TV3 data
Uncertainty array initialized,
readnoise =3.03,3.13,3.08,3.18
gain =1.56,1.56,1.56,1.56
default bias levels = 2556.4,2543.8,2503.3,2605.7
DQICORR PERFORM
DQITAB iref$3a32019bi_bpx.fits
DQITAB PEDIGREE=INFLIGHT 23/06/2009 15/10/2009
DQITAB DESCRIP =Based on SMOV and Cycle 17 data.-----------------------------------
Amp: ABCD chip: 2 ccdamp: CD
Number of amps 2
DQICORR COMPLETE
ATODCORR OMIT
BLEVCORR PERFORM
OSCNTAB iref$q911321oi_osc.fits
OSCNTAB PEDIGREE=GROUND
OSCNTAB DESCRIP =WFC3 normal overscan CCD data compatible
(blevcorr) Rejected 38 bias values from parallel fit.
Computed a parallel fit with slope of -0.000120045
(blevcorr) Rejected 1 bias values from serial fit.
Computed a serial fit with slope of 7.17663e-05 and intercept of 2501.52
(blevcorr) Rejected 29 bias values from parallel fit.
Computed a parallel fit with slope of 0.000100165
(blevcorr) Rejected 2 bias values from serial fit.
Computed a serial fit with slope of -2.86934e-06 and intercept of 2602.87
Bias level from overscan has been subtracted;
mean of bias levels subtracted was 2552.2.
bias level of 2501.65 was subtracted for AMP C.
bias level of 2602.76 was subtracted for AMP D.
BLEVCORR COMPLETE
BIASCORR PERFORM
BIASFILE iref$42h2117di_bia.fits
BIASFILE PEDIGREE=INFLIGHT 2019-01-01 2019-12-31
BIASFILE DESCRIP =2019 Superbias intended for use with WFC3/UVIS non-subarray data
BIASCORR COMPLETE
SATUFILE iref$7b21735ti_sat.fits
SATUFILE PEDIGREE=GROUND
SATUFILE DESCRIP =Saturation level map for full-frame unbinned and subarray &
Full-well saturation flagging being performed.
Image has starting location of 0,0 in the reference image
Saturation image and input are the same size.
Amp: ABCD chip: 2 ccdamp: CD
Number of amps 2
Full-frame full-well saturation image flagging step done.
Performing SINK pixel detection for imset 1
Sink pixel flagging complete
FLSHCORR PERFORM
FLSHFILE iref$6c82013hi_fls.fits
FLSHFILE PEDIGREE=INFLIGHT 27/08/2012 07/12/2022
FLSHFILE DESCRIP =Post-flash created from in-flight WFC3/UVIS frames.----------------
Mean of post-flash image (MEANFLSH) = 12.0681
FLSHCORR COMPLETE
Imset 1 End 16:55:27 UTC
Imset 2 Begin 16:55:27 UTC
CCDTAB iref$t291659mi_ccd.fits
CCDTAB PEDIGREE=GROUND
CCDTAB DESCRIP =UVIS-1 CCD characteristics from TV3 data
CCDTAB DESCRIP =From TV3 data
Uncertainty array initialized,
readnoise =3.03,3.13,3.08,3.18
gain =1.56,1.56,1.56,1.56
default bias levels = 2556.4,2543.8,2503.3,2605.7
DQICORR PERFORM
Amp: ABCD chip: 1 ccdamp: AB
Number of amps 2
DQICORR COMPLETE
ATODCORR OMIT
BLEVCORR PERFORM
(blevcorr) Rejected 34 bias values from parallel fit.
Computed a parallel fit with slope of 0.000116704
(blevcorr) Rejected 0 bias values from serial fit.
Computed a serial fit with slope of -2.20229e-05 and intercept of 2554.44
(blevcorr) Rejected 26 bias values from parallel fit.
Computed a parallel fit with slope of 7.74437e-05
(blevcorr) Rejected 1 bias values from serial fit.
Computed a serial fit with slope of 1.28148e-05 and intercept of 2541.94
Bias level from overscan has been subtracted;
mean of bias levels subtracted was 2548.08.
bias level of 2554.31 was subtracted for AMP A.
bias level of 2541.85 was subtracted for AMP B.
bias level of 2501.65 was subtracted for AMP C.
bias level of 2602.76 was subtracted for AMP D.
BLEVCORR COMPLETE
BIASCORR PERFORM
BIASCORR COMPLETE
Full-well saturation flagging being performed.
Image has starting location of 0,0 in the reference image
Saturation image and input are the same size.
Amp: ABCD chip: 1 ccdamp: AB
Number of amps 2
Full-frame full-well saturation image flagging step done.
Performing SINK pixel detection for imset 2
Sink pixel flagging complete
FLSHCORR PERFORM
Mean of post-flash image (MEANFLSH) = 12.0962
FLSHCORR COMPLETE
Imset 2 End 16:55:28 UTC
Setting Bias Keywords in header
End 31-Dec-2024 16:55:28 UTC
*** WF3CCD complete ***
CALBEG*** WF32D -- Version 3.7.2 (Apr-15-2024) ***
Begin 31-Dec-2024 16:55:28 UTC
Input idv404axq_blv_tmp.fits
Output idv404axq_flt.fits
Trying to open idv404axq_blv_tmp.fits...
Read in Primary header from idv404axq_blv_tmp.fits...
APERTURE UVIS
FILTER F502N
DETECTOR UVIS
Imset 1 Begin 16:55:28 UTC
CCDTAB iref$t291659mi_ccd.fits
CCDTAB PEDIGREE=GROUND
CCDTAB DESCRIP =UVIS-1 CCD characteristics from TV3 data
CCDTAB DESCRIP =From TV3 data
DQICORR PERFORM
DQITAB iref$3a32019bi_bpx.fits
DQITAB PEDIGREE=INFLIGHT 23/06/2009 15/10/2009
DQITAB DESCRIP =Based on SMOV and Cycle 17 data.-----------------------------------
DQICORR COMPLETE
DARKCORR PERFORM
DARKFILE iref$7bg1956fi_drk.fits
DARKFILE PEDIGREE=INFLIGHT 28/07/2019 31/07/2019
DARKFILE DESCRIP =DARK created from in-flight WFC3/UVIS frames ----------------------
Mean of dark image (MEANDARK) = 0.779632
DARKCORR COMPLETE
FLATCORR PERFORM
PFLTFILE iref$zcv20544i_pfl.fits
PFLTFILE PEDIGREE=INFLIGHT 14/05/2009 01/08/2011
PFLTFILE DESCRIP =------ Chip-dependent LP-flat (TV3 LP-flat * Inflight L-flat)------
FLATCORR COMPLETE
SHADCORR OMIT
PHOTCORR PERFORM
FLUXCORR PERFORM
Found parameterized variable 1.
NUMPAR=1, N=1
Allocated 1 parnames
Adding parameter mjd#58693.1816 as parnames[0]
==> Value of PHOTFLAM = 5.1534121e-18
==> Value of PHOTPLAM = 5009.6358
==> Value of PHOTBW = 27.099804
==> Value of PHTFLAM1 = 0
==> Value of PHTFLAM2 = 5.1808651e-18
Found parameterized variable 1.
NUMPAR=1, N=1
Allocated 1 parnames
Adding parameter mjd#58693.1816 as parnames[0]
==> Value of PHOTFLAM = 5.1534121e-18
==> Value of PHOTPLAM = 5009.6379
==> Value of PHOTBW = 26.961257
==> Value of PHTFLAM1 = 5.1534121e-18
==> Value of PHTFLAM2 = 0
IMPHTTAB iref$51c1638pi_imp.fits
IMPHTTAB PEDIGREE=INFLIGHT 08/05/2009 01/11/2019
IMPHTTAB DESCRIP =2020 Time-dependent Inverse Sensitivity with updated calspec model
PHOTCORR COMPLETE
Imset 1 End 16:55:28 UTC
Imset 2 Begin 16:55:28 UTC
CCDTAB iref$t291659mi_ccd.fits
CCDTAB PEDIGREE=GROUND
CCDTAB DESCRIP =UVIS-1 CCD characteristics from TV3 data
CCDTAB DESCRIP =From TV3 data
DQICORR PERFORM
DQICORR COMPLETE
DARKCORR PERFORM
Mean of dark image (MEANDARK) = 0.746724
DARKCORR COMPLETE
FLATCORR PERFORM
FLATCORR COMPLETE
SHADCORR OMIT
PHOTCORR PERFORM
FLUXCORR PERFORM
Found parameterized variable 1.
NUMPAR=1, N=1
Allocated 1 parnames
Adding parameter mjd#58693.1816 as parnames[0]
==> Value of PHOTFLAM = 5.1534121e-18
==> Value of PHOTPLAM = 5009.6379
==> Value of PHOTBW = 26.961257
==> Value of PHTFLAM1 = 5.1534121e-18
==> Value of PHTFLAM2 = 0
Found parameterized variable 1.
NUMPAR=1, N=1
Allocated 1 parnames
Adding parameter mjd#58693.1816 as parnames[0]
==> Value of PHOTFLAM = 5.1534121e-18
==> Value of PHOTPLAM = 5009.6358
==> Value of PHOTBW = 27.099804
==> Value of PHTFLAM1 = 0
==> Value of PHTFLAM2 = 5.1808651e-18
IMPHTTAB iref$51c1638pi_imp.fits
IMPHTTAB PEDIGREE=INFLIGHT 08/05/2009 01/11/2019
IMPHTTAB DESCRIP =2020 Time-dependent Inverse Sensitivity with updated calspec model
PHOTCORR COMPLETE
Imset 2 End 16:55:28 UTC
2024366165529-I--------------- Image statistics recomputed: IDV404AXQ ----------
FLUXCORR PERFORM
FLUXCORR COMPLETE
End 31-Dec-2024 16:55:29 UTC
*** WF32D complete ***
CALBEG*** WF32D -- Version 3.7.2 (Apr-15-2024) ***
Begin 31-Dec-2024 16:55:29 UTC
Input idv404axq_blc_tmp.fits
Output idv404axq_flc.fits
Trying to open idv404axq_blc_tmp.fits...
Read in Primary header from idv404axq_blc_tmp.fits...
APERTURE UVIS
FILTER F502N
DETECTOR UVIS
Imset 1 Begin 16:55:29 UTC
CCDTAB iref$t291659mi_ccd.fits
CCDTAB PEDIGREE=GROUND
CCDTAB DESCRIP =UVIS-1 CCD characteristics from TV3 data
CCDTAB DESCRIP =From TV3 data
DQICORR PERFORM
DQITAB iref$3a32019bi_bpx.fits
DQITAB PEDIGREE=INFLIGHT 23/06/2009 15/10/2009
DQITAB DESCRIP =Based on SMOV and Cycle 17 data.-----------------------------------
DQICORR COMPLETE
DARKCORR PERFORM
DARKFILE iref$3961719li_dkc.fits
DARKFILE PEDIGREE=INFLIGHT 28/07/2019 31/07/2019
DARKFILE DESCRIP =DARK created from in-flight WFC3/UVIS frames ----------------------
Mean of dark image (MEANDARK) = 0.56183
DARKCORR COMPLETE
FLATCORR PERFORM
PFLTFILE iref$zcv20544i_pfl.fits
PFLTFILE PEDIGREE=INFLIGHT 14/05/2009 01/08/2011
PFLTFILE DESCRIP =------ Chip-dependent LP-flat (TV3 LP-flat * Inflight L-flat)------
FLATCORR COMPLETE
SHADCORR OMIT
PHOTCORR PERFORM
FLUXCORR PERFORM
Found parameterized variable 1.
NUMPAR=1, N=1
Allocated 1 parnames
Adding parameter mjd#58693.1816 as parnames[0]
==> Value of PHOTFLAM = 5.1534121e-18
==> Value of PHOTPLAM = 5009.6358
==> Value of PHOTBW = 27.099804
==> Value of PHTFLAM1 = 0
==> Value of PHTFLAM2 = 5.1808651e-18
Found parameterized variable 1.
NUMPAR=1, N=1
Allocated 1 parnames
Adding parameter mjd#58693.1816 as parnames[0]
==> Value of PHOTFLAM = 5.1534121e-18
==> Value of PHOTPLAM = 5009.6379
==> Value of PHOTBW = 26.961257
==> Value of PHTFLAM1 = 5.1534121e-18
==> Value of PHTFLAM2 = 0
IMPHTTAB iref$51c1638pi_imp.fits
IMPHTTAB PEDIGREE=INFLIGHT 08/05/2009 01/11/2019
IMPHTTAB DESCRIP =2020 Time-dependent Inverse Sensitivity with updated calspec model
PHOTCORR COMPLETE
Imset 1 End 16:55:29 UTC
Imset 2 Begin 16:55:29 UTC
CCDTAB iref$t291659mi_ccd.fits
CCDTAB PEDIGREE=GROUND
CCDTAB DESCRIP =UVIS-1 CCD characteristics from TV3 data
CCDTAB DESCRIP =From TV3 data
DQICORR PERFORM
DQICORR COMPLETE
DARKCORR PERFORM
Mean of dark image (MEANDARK) = 0.558847
DARKCORR COMPLETE
FLATCORR PERFORM
FLATCORR COMPLETE
SHADCORR OMIT
PHOTCORR PERFORM
FLUXCORR PERFORM
Found parameterized variable 1.
NUMPAR=1, N=1
Allocated 1 parnames
Adding parameter mjd#58693.1816 as parnames[0]
==> Value of PHOTFLAM = 5.1534121e-18
==> Value of PHOTPLAM = 5009.6379
==> Value of PHOTBW = 26.961257
==> Value of PHTFLAM1 = 5.1534121e-18
==> Value of PHTFLAM2 = 0
Found parameterized variable 1.
NUMPAR=1, N=1
Allocated 1 parnames
Adding parameter mjd#58693.1816 as parnames[0]
==> Value of PHOTFLAM = 5.1534121e-18
==> Value of PHOTPLAM = 5009.6358
==> Value of PHOTBW = 27.099804
==> Value of PHTFLAM1 = 0
==> Value of PHTFLAM2 = 5.1808651e-18
IMPHTTAB iref$51c1638pi_imp.fits
IMPHTTAB PEDIGREE=INFLIGHT 08/05/2009 01/11/2019
IMPHTTAB DESCRIP =2020 Time-dependent Inverse Sensitivity with updated calspec model
PHOTCORR COMPLETE
Imset 2 End 16:55:30 UTC
2024366165530-I--------------- Image statistics recomputed: IDV404AXQ ----------
FLUXCORR PERFORM
FLUXCORR COMPLETE
End 31-Dec-2024 16:55:30 UTC
*** WF32D complete ***
End 31-Dec-2024 16:55:30 UTC
*** CALWF3 complete ***
CALWF3 completion for idv404axq_raw.fits
# show list of cwd to verify calibrated files were made
!ls -ltr *.fits
-rw-r--r-- 1 runner docker 34891200 Dec 31 16:49 idv404axq_raw.fits
-rw-r--r-- 1 runner docker 168079680 Dec 31 16:55 idv404axq_flt.fits
-rw-r--r-- 1 runner docker 168079680 Dec 31 16:55 idv404axq_flc.fits
10. Inspect FLC Image Header#
To verify that the data was calibrated with the v1.0 pixel-based CTE-correction, header keyword CAL_VER
should be 3.5.2
,
CTE_VER
should be 1.0
, and CTE_NAME
should be pixelCTE 2012
# Recollect and display FLC header keywords
file, pctetab, drkcfile, pctecorr, calver, ctename, ctever = [], [], [], [], [], [], []
for f in glob.glob('*flc.fits'):
h = fits.getheader(f)
file.append(h['filename'])
pctetab.append(h['pctetab'])
drkcfile.append(h['drkcfile'])
pctecorr.append(h['pctecorr'])
calver.append(h['cal_ver'])
ctename.append(h['cte_name'])
ctever.append(h['cte_ver'])
final_table = Table([file, pctetab, drkcfile, pctecorr, calver, ctename, ctever],
names=('file', 'pctetab', 'drkcfile', 'pctecorr', 'cal_ver', 'cte_name', 'cte_ver'))
final_table
file | pctetab | drkcfile | pctecorr | cal_ver | cte_name | cte_ver |
---|---|---|---|---|---|---|
str18 | str23 | str23 | str8 | str19 | str13 | str3 |
idv404axq_flc.fits | iref$zcv2057mi_cte.fits | iref$3961719li_dkc.fits | COMPLETE | 3.7.2 (Apr-15-2024) | pixelCTE 2012 | 1.0 |
11. Investigate v1.0 and v2.0 Differences#
Now that we have created a v1.0 CTE corrected image, lets compare it to the same image calibrated with the v2.0 correction.
11.1 Download the v2.0 FLC File#
First, we need to download the same FLC file from MAST that is corrected with the v2.0 pixel-based CTE correction so that we can
compare it to the v1.0 FLC file we just created in the notebook. In this step we rename the downloaded FLC to idv404axq_v2.0_flc.fits
.
# Get the observation records
obs_table = Observations.query_criteria(obs_id='idv404axq*', proposal_id=15576)
# Get the listing of data products
products = Observations.get_product_list(obs_table)
# Filter the products for the RAW files
filtered_products = Observations.filter_products(products, productSubGroupDescription='FLC', project='CALWF3')
# Download all the images above
download_table = Observations.download_products(filtered_products, mrp_only=False)
# For convenience move raws to cwd and remove empty download dir
for file in download_table['Local Path']:
filename = file.split('/')[-1][:9]+'_v2.0_flc.fits'
os.rename(file, os.path.basename(filename))
os.rmdir('mastDownload/HST/'+filename[:9])
os.rmdir('mastDownload/HST/')
os.rmdir('mastDownload/')
Downloading URL https://mast.stsci.edu/api/v0.1/Download/file?uri=mast:HST/product/idv404axq_flc.fits to ./mastDownload/HST/idv404axq/idv404axq_flc.fits ...
[Done]
11.2 Open Files#
In the cell below, we open each of the different files (FLT, v1.0 and v2.0 FLC) and create full-frame ~4Kx4K arrays. Additionally,
we multiply the science arrays by the pixel area maps. Due to the geometric distortion present in WFC3 images, these pixel
area maps are necessary to achieve uniformity in the measured counts of an object across the field. The pixel map simply
reflects the area of the pixels at the location of the source, and by multiplying the images by this field-dependent correction
factor, we will improve the accuracy of the photometry.
# Open data and set variables
with fits.open('idv404axq_v2.0_flc.fits') as hdu:
v2_uvis1 = hdu[4].data
v2_uvis2 = hdu[1].data
with fits.open('idv404axq_flc.fits') as hdu:
v1_uvis1 = hdu[4].data
v1_uvis2 = hdu[1].data
with fits.open('idv404axq_flt.fits') as hdu:
flt_uvis1 = hdu[4].data
flt_uvis2 = hdu[1].data
# Load pixel area maps
PAM_uvis1 = fits.getdata('example/UVIS1wfc3_map.fits')
PAM_uvis2 = fits.getdata('example/UVIS2wfc3_map.fits')
# Stich UVIS1 and 2 together and multiply by pixel area map
v2sci = np.concatenate([v2_uvis2*PAM_uvis2, v2_uvis1*PAM_uvis1])
v1sci = np.concatenate([v1_uvis2*PAM_uvis2, v1_uvis1*PAM_uvis1])
fltsci = np.concatenate([flt_uvis2*PAM_uvis2, flt_uvis1*PAM_uvis1])
11.3 Display 50x50 Pixel Background Subsection#
One of the differences between the v1.0 and v2.0 CTE correction is the background level. Here, we show a square 50x50 pixel
subsection that is mostly featureless, i.e. no known sources or cosmic ray hits. The v2.0 correction significantly reduces noise
amplification and improves the resulting background. To aid in the visual inspection of the background subsection, an animated
GIF is included in the notebook that blinks between the v1.0 and v2.0 FLC files.
# Generate subplots
fig, [ax1, ax2, ax3] = plt.subplots(1, 3, figsize=(15, 10), dpi=150)
# Generate background subsections
flt_bkg = fltsci[2070:2120, 2180:2230]
v1_bkg = v1sci[2070:2120, 2180:2230]
v2_bkg = v2sci[2070:2120, 2180:2230]
# Calculate min and max values for image scaling
z = ZScaleInterval()
z1, z2 = z.get_limits(v1_bkg)
# Display background subsection
im1 = ax1.imshow(flt_bkg, origin='lower', cmap='Greys_r', vmin=z1, vmax=z2)
im2 = ax2.imshow(v1_bkg, origin='lower', cmap='Greys_r', vmin=z1, vmax=z2)
im3 = ax3.imshow(v2_bkg, origin='lower', cmap='Greys_r', vmin=z1, vmax=z2)
# Formatting
fig.colorbar(im1, ax=ax1, shrink=0.35, pad=0.02)
fig.colorbar(im2, ax=ax2, shrink=0.35, pad=0.02)
fig.colorbar(im3, ax=ax3, shrink=0.35, pad=0.02)
ax1.set_title('FLT File BKG Subsection', size=14)
ax2.set_title('v1.0 PCTE FLC BKG Subsection', size=14)
ax3.set_title('v2.0 PCTE FLC BKG Subsection', size=14)
ax1.axis('off'), ax2.axis('off'), ax3.axis('off')
fig.tight_layout()
11.3.1 Pixel Distribution of Background Subsections#
To gain a more quantitative picture of how the background pixels are changing between the different file versions, we plot
the distribution of pixel values from the 50x50 pixel subsection above. The increased noise level in the v1.0 correction is
apparent in the blue histogram below. In addition, we have also computed the difference between the file types and have
plotted them as histograms. These two plots illustrates how the background in the v2.0 CTE corrected image is less noisy
and more in-line with the values seen in the FLT image.
# Generate subplots
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(7, 10), dpi=120)
# Plot background subsection histograms
ax1.hist(flt_bkg.ravel(), bins=100, range=(-30, 100), histtype='step', color='C3', label='FLT')
ax1.hist(v1_bkg.ravel(), bins=100, range=(-30, 100), histtype='step', color='C0', label='v1.0 FLC')
ax1.hist(v2_bkg.ravel(), bins=100, range=(-30, 100), histtype='step', color='k', label='v2.0 FLC')
# Plot background subsection differential histograms
ax2.hist((v1_bkg-flt_bkg).ravel(), bins=100, range=(-25, 50), histtype='step', color='magenta', label='v1.0 FLC $-$ FLT')
ax2.hist((v2_bkg-flt_bkg).ravel(), bins=100, range=(-25, 50), histtype='step', color='limegreen', label='v2.0 FLC $-$ FLT')
ax2.hist((v1_bkg-v2_bkg).ravel(), bins=100, range=(-25, 50), histtype='step', color='C9', label='v1.0 $-$ v2.0 FLC')
# Formatting
ax1.set_title('Background Subsection Histogram', size=14)
ax2.set_title('Background Subsection Differential Histogram', size=14)
ax1.set_xlabel('Pixel Value [e-]', size=12)
ax1.set_ylabel('Frequency', size=12)
ax2.set_xlabel('Pixel Value [e-]', size=12)
ax2.set_ylabel('Frequency', size=12)
ax1.grid(alpha=0.5), ax2.grid(alpha=0.5)
ax1.legend(), ax2.legend()
ax1.set_yscale('log')
ax2.set_yscale('log')
fig.tight_layout()
11.4 Display Image Subsection#
Another difference between the v1.0 and v2.0 pixel-based CTE model is the amount of correction applied to fainter sources.
In order to reduce noise amplification, the fluxes of faint sources only receive a limited amount of correction in the v2.0 version.
We again provide an animated GIF of the two subsections to aid with the visual comparison.
# Generate subplots
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(8, 8), dpi=150)
# Calculate min and max values for image scaling
z = ZScaleInterval()
z1, z2 = z.get_limits(v1_uvis1)
# Display subsection
im1 = ax1.imshow(v1_uvis1, origin='lower', cmap='Greys_r', vmin=z1, vmax=z2)
im2 = ax2.imshow(v2_uvis1, origin='lower', cmap='Greys_r', vmin=z1, vmax=z2)
# Formatting
ax1.set_xlim(85, 325), ax2.set_xlim(85, 325)
ax1.set_ylim(0, 149), ax2.set_ylim(0, 149)
fig.colorbar(im1, ax=ax1, shrink=0.95, pad=0.01)
fig.colorbar(im2, ax=ax2, shrink=0.95, pad=0.01)
ax1.set_title('v1.0 PCTE FLC UVIS1 Subsection', size=14)
ax2.set_title('v2.0 PCTE FLC UVIS1 Subsection', size=14)
fig.tight_layout()
11.5 Aperture Photometry#
To show the quantitative difference in the observed flux of sources between the v1.0 and v2.0 pixel-based CTE correction,
we perform aperture photometry on six stars of varying brightness within the image subsection above. Here, we display the
image subsection again with the apertures, annuli, and star labels overplotted. This subsection includes the first ~150 rows
of UVIS 1, which means all of these stars suffer the most CTE flux loss as they transfer 1900+ rows to the readout amplifier.
First, we approximate the center x and y positions of the stars in the 4Kx4K science arrays, and create the apertures and
annuli using photutils
.
Then, we use photutils
to measure the signal in each area and subtract the background values in the annuli from the
aperture sum values. We define a function named get_flux()
to do this for us.
def get_flux(data, aperture, annulus_aperture):
"""
Function to calculate background subtracted aperture sum
Parameters:
-----------
data : float array
The 2d array of science pixels being measured
aperture : photutils obj
A photutils aperture object with defined position and radius
annulus_aperture : photutils obj
A photutils circular annulus aperture object with defined position and radii
Return:
-------
flux : float
The measured background subtracted aperture sum
"""
# Generate photutils.aperture_photometry table object
phot = aperture_photometry(data, aperture)
# Measure background around sources. aperture_stats_tbl() comes from background_median.py
bkg_phot = aperture_stats_tbl(data, annulus_aperture, method='exact', sigma_clip=True)
# Calculate background subtracted aperture sum
flux = phot['aperture_sum'] - bkg_phot['aperture_median'] * aperture.area
return flux
# Approximate x,y pixel locations of each star in the 4Kx4K array
positions = [(299.4, 2135.6),
(114.7, 2093.4),
(171.3, 2074.9),
(262.6, 2164.9),
(289.1, 2085.6),
(204.8, 2073.1)]
# Photutils cirular aperture object with small radius
aperture = CircularAperture(positions, r=3)
# Photutils circular annulus aperture object
annulus_aperture = CircularAnnulus(positions, r_in=13, r_out=19)
# Call function to calculate flux of stars
# THE RUNTIME WARNING MAY BE IGNORED
fltflux = get_flux(fltsci, aperture, annulus_aperture)
v1flux = get_flux(v1sci, aperture, annulus_aperture)
v2flux = get_flux(v2sci, aperture, annulus_aperture)
/home/runner/work/hst_notebooks/hst_notebooks/notebooks/WFC3/calwf3_v1.0_cte/example/background_median.py:88: RuntimeWarning: invalid value encountered in divide
values = cutout * mask.data / mask.data
/home/runner/work/hst_notebooks/hst_notebooks/notebooks/WFC3/calwf3_v1.0_cte/example/background_median.py:88: RuntimeWarning: invalid value encountered in divide
values = cutout * mask.data / mask.data
/home/runner/work/hst_notebooks/hst_notebooks/notebooks/WFC3/calwf3_v1.0_cte/example/background_median.py:88: RuntimeWarning: invalid value encountered in divide
values = cutout * mask.data / mask.data
RuntimeWarning: invalid value encountered in true_divide
message. Finally, we plot our results.
The first plot below shows the measured flux of the six stars in each of the different calibrated products. Stars 1-6 are organized
by increasing flux, with Star 1 being the faintest and Star 6 being the brightest. The x-axis values correspond to the median flux
value measured in each of the three different files (FLT, v1.0, and v2.0) per star. The y-axis values show the individual flux values
for each star where the different colors and symbols represent the three file types. For example, the individual flux values (y-axis)
of Star 1 for the FLT, v1.0, and v2.0 files are ~2467, 3056, and 2799 e- respectively. The median of the three values is ~2799 e-,
which is the value plotted on the x-axis. The second plot illustrates the percent differences between the three different
flux values per star, and uses the same x-axis values as the first plot.
The FLT files have no CTE correction applied and thus have the lowest measured flux for each star due to the CTE flux loss.
Stars 1-4 have noticably different flux values between the v1.0 and v2.0 CTE corrections. In v1.0, the CTE algorithm is actually
over-correcting these fainter sources resulting in higher aperture photometry measurements. The flux values for stars 1-4 range
from ~3000 - 10000 e- within a 3-pixel radius aperture. The flux values between the v1.0 and v2.0 CTE corrections for stars
1-4 have percent differences of ~9 - 4%. Sources with more than ~10000 e- within a 3-pixel aperture (stars 5 & 6) have more
compareable flux values between the v1.0 and v2.0 CTE corrections, and have percent differences less than 2%.
# Generate subplots
fig, [ax1, ax2] = plt.subplots(2, 1, figsize=(8, 13), dpi=120)
ax1.grid(alpha=0.5), ax2.grid(alpha=0.5)
# Find median flux values between products
medflux = np.median([fltflux, v1flux, v2flux], axis=0)
# Scatter plot of measured flux
ax1.scatter(medflux, fltflux, 25, marker='o', c='C3', label='FLT')
ax1.scatter(medflux, v1flux, 30, marker='^', c='C0', label='v1.0 FLC')
ax1.scatter(medflux, v2flux, 45, marker='*', c='k', label='v2.0 FLC')
# Scatter plot of percentage difference
ax2.scatter(medflux, abs((fltflux-v1flux))/((fltflux+v1flux)/2)*100, 30,
marker='^', c='magenta', label=r'$\frac{|FLT - v1.0|}{(FLT + v1.0) ÷ 2}$')
ax2.scatter(medflux, abs((fltflux-v2flux))/((fltflux+v2flux)/2)*100, 45,
marker='*', c='limegreen', label=r'$\frac{|FLT - v2.0|}{(FLT + v2.0) ÷ 2}$')
ax2.scatter(medflux, abs((v1flux-v2flux))/((v1flux+v2flux)/2)*100, 25,
marker='s', c='C9', label=r'$\frac{|v1.0 - v2.0|}{(v1.0 + v2.0) ÷ 2}$')
# Formatting
ax1.set_title('Measured Flux Within 3-pix Radius Aperture', size=14)
ax1.set_xlabel('Median Flux [e-]', size=12)
ax1.set_ylabel('Flux [e-]', size=12)
ax2.set_xlabel('Median Flux [e-]', size=12)
ax2.set_ylabel('Percent Difference [%]', size=12)
ax1.legend(prop={'size': 11}), ax2.legend(prop={'size': 15})
ax1.set_yscale('log')
12. Conclusions#
Thank you for walking through this notebook. You now have everything you need to process your own files with the v1.0 CTE
correction within calwf3
. Since completing this notebook you should be more familiar with:
Applying the v1.0 pixel-based CTE correction to 2009-2021 UVIS data.
Which header keywords of the
raw
fits file to edit in order to use the v1.0 correction.How to find and download the appropriate
PCTETAB
andDRKCFILE
reference files.Verifying your version of
calwf3
and calibrating araw
file with the v1.0 CTE correction.Investigating the differences between v1.0 and v2.0 CTE corrected files.
Congratulations, you have completed the notebook!#
Additional Resources#
Below are some additional resources that may be helpful. Please feel free to contact the WFC3 Helpdesk for any questions.
About this Notebook#
Author: Benjamin Kuhn; WFC3 Instrument Team
Created: February 22, 2022
Last updated on: November 15, 2023
Citations#
If you use astropy
, astroquery
, numpy
, matplotlib
, photutils
, or scipy
for published research, please cite the authors.
Follow these links for more information about citing the libraries below: